Skip to content
2000
image of Progress in the Development of Antifouling Electrochemical Biosensors

Abstract

Electrochemical biosensors a subclass of biosensors, consisting of a biosensing element and an electrochemical transducer, have been widely used in various fields due to their excellent performance and portable device. However, in complex actual samples, non-specific adsorption of proteins and solid particles, and adhesion of cells and bacteria will lead to problems such as reduced sensor sensitivity, prolonged response time, and expanded detection errors. Therefore, constructing antifouling sensing platforms to effectively resist the bioadhesion of non-targets is crucial for the performance of biosensors. This study first introduces the commonly used classifications of electrochemical biosensors and their main contaminants. It also provides a comprehensive overview of the construction methods and application research of electrochemical antifouling sensors using different strategies, including the construction of physical, chemical and biological modification interfaces. In addition, the research progress on antifouling and antibacterial dual-action coatings for electrochemical detection is also reviewed. Finally, the challenges and future development trends of various methods are summarized, providing clues for better practical applications of electrochemical biosensors.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110320891240823065902
2024-09-02
2024-11-26
Loading full text...

Full text loading...

References

  1. Cesewski E. Johnson B.N. Electrochemical biosensors for pathogen detection. Biosens. Bioelectron. 2020 159 112214 10.1016/j.bios.2020.112214
    [Google Scholar]
  2. Shen L. Wang P. Ke Y. DNA nanotechnology‐based biosensors and therapeutics. Adv. Healthc. Mater. 2021 10 15 2002205 10.1002/adhm.202002205
    [Google Scholar]
  3. Justino C.I.L. Duarte A.C. Rocha-Santos T.A.P. Critical overview on the application of sensors and biosensors for clinical analysis. Trends Analyt. Chem. 2016 85 36 60 10.1016/j.trac.2016.04.004
    [Google Scholar]
  4. Aydemir N. Malmström J. Travas-Sejdic J. Conducting polymer based electrochemical biosensors. Phys. Chem. Chem. Phys. 2016 18 12 8264 8277 10.1039/C5CP06830D
    [Google Scholar]
  5. Baranwal J. Barse B. Gatto G. Broncova G. Kumar A. Electrochemical sensors and their applications: A review. Chemosensors (Basel) 2022 10 9 363 10.3390/chemosensors10090363
    [Google Scholar]
  6. Huang Y. Xu J. Liu J. Wang X. Chen B. Disease-related detection with electrochemical biosensors: A review. Sensors (Basel) 2017 17 10 2375 10.3390/s17102375
    [Google Scholar]
  7. Kim J. Jeerapan I. Ciui B. Hartel M.C. Martin A. Wang J. Edible electrochemistry: Food materials based electrochemical sensors. Adv. Healthc. Mater. 2017 6 22 1700770 10.1002/adhm.201700770
    [Google Scholar]
  8. Wang J. Nanomaterial-based electrochemical biosensors. Analyst (Lond.) 2005 130 4 421 10.1039/b414248a
    [Google Scholar]
  9. Jarosińska E. Zambrowska Z. Witkowska Nery E. Methods of protection of electrochemical sensors against biofouling in cell culture applications. ACS Omega. 2024 9 4 4572 4580 10.1021/acsomega.3c07660
    [Google Scholar]
  10. Pollard T.D. Ong J.J. Goyanes A. Orlu M. Gaisford S. Elbadawi M. Basit A.W. Electrochemical biosensors: A nexus for precision medicine. Drug Discov. Today 2021 26 1 69 79 10.1016/j.drudis.2020.10.021
    [Google Scholar]
  11. Mohammadpour-Haratbar A. Boraei S.B.A. Zare Y. Rhee K.Y. Park S.J. Graphene-based electrochemical biosensors for breast cancer detection. Biosensors (Basel) 2023 13 1 80 10.3390/bios13010080
    [Google Scholar]
  12. Bakirhan N.K. Topal B.D. Ozcelikay G. Karadurmus L. Ozkan S.A. Current advances in electrochemical biosensors and nanobiosensors. Crit. Rev. Anal. Chem. 2022 52 3 519 534 10.1080/10408347.2020.1809339
    [Google Scholar]
  13. Medetalibeyoglu H. Kotan G. Atar N. Yola M.L. A novel sandwich-type SERS immunosensor for selective and sensitive carcinoembryonic antigen (CEA) detection. Anal. Chim. Acta 2020 1139 100 110 10.1016/j.aca.2020.09.034
    [Google Scholar]
  14. Medetalibeyoglu H. Kotan G. Atar N. Yola M.L. A novel and ultrasensitive sandwich-type electrochemical immunosensor based on delaminated MXene@AuNPs as signal amplification for prostate specific antigen (PSA) detection and immunosensor validation. Talanta 2020 220 121403 10.1016/j.talanta.2020.121403
    [Google Scholar]
  15. Yang Y. Yan Q. Liu Q. Li Y. Liu H. Wang P. Chen L. Zhang D. Li Y. Dong Y. An ultrasensitive sandwich-type electrochemical immunosensor based on the signal amplification strategy of echinoidea-shaped Au@Ag-Cu2O nanoparticles for prostate specific antigen detection. Biosens. Bioelectron. 2018 99 450 457 10.1016/j.bios.2017.08.018
    [Google Scholar]
  16. Lee H. Hong Y.J. Baik S. Hyeon T. Kim D.H. Enzyme‐based glucose sensor: from invasive to wearable device. Adv. Healthc. Mater. 2018 7 8 1701150 10.1002/adhm.201701150
    [Google Scholar]
  17. Diculescu V.C. Chiorcea-Paquim A.M. Oliveira-Brett A.M. Applications of a DNA-electrochemical biosensor. Trends Analyt. Chem. 2016 79 23 36 10.1016/j.trac.2016.01.019
    [Google Scholar]
  18. Zhang H. Liu J. DNA-based biosensors. Trends Analyt. Chem. 2023 166 117164 10.1016/j.trac.2023.117164
    [Google Scholar]
  19. Yang H. Zhou Y. Liu J. G-quadruplex DNA for construction of biosensors. Trends Analyt. Chem. 2020 132 116060 10.1016/j.trac.2020.116060
    [Google Scholar]
  20. Hájková A. Barek J. Vyskočil V. Electrochemical DNA biosensor for detection of DNA damage induced by hydroxyl radicals. Bioelectrochemistry 2017 116 1 9 10.1016/j.bioelechem.2017.02.003
    [Google Scholar]
  21. Wang Z. Chen J. Ma H. Deng Y. Li Y. Geng L. Huang Y. Fan Y. A novel copper ion enhanced electrochemical DNA biosensor for the determination of epinephrine. Talanta 2024 276 126274 10.1016/j.talanta.2024.126274
    [Google Scholar]
  22. Mahato K. Wang J. Electrochemical sensors: From the bench to the skin. Sens. Actuators B Chem. 2021 344 130178 10.1016/j.snb.2021.130178
    [Google Scholar]
  23. Singh N.K. Chung S. Sveiven M. Hall D.A. Cortisol detection in undiluted human serum using a sensitive electrochemical structure-switching aptamer over an antifouling nanocomposite layer. ACS Omega 2021 6 42 27888 27897 10.1021/acsomega.1c03552
    [Google Scholar]
  24. Wu C. Zhou Y. Wang H. Hu J. P4VP modified zwitterionic polymer for the preparation of antifouling functionalized surfaces. Nanomaterials (Basel) 2019 9 5 706 10.3390/nano9050706
    [Google Scholar]
  25. Min J. Sempionatto J.R. Teymourian H. Wang J. Gao W. Wearable electrochemical biosensors in North America. Biosens. Bioelectron. 2021 172 112750 10.1016/j.bios.2020.112750
    [Google Scholar]
  26. Zhou L. Li X. Zhu B. Su B. An overview of antifouling strategies for electrochemical analysis. Electroanalysis 2022 34 6 966 975 10.1002/elan.202100406
    [Google Scholar]
  27. Lin P.H. Li B.R. Antifouling strategies in advanced electrochemical sensors and biosensors. Analyst (Lond.) 2020 145 4 1110 1120 10.1039/C9AN02017A
    [Google Scholar]
  28. Wellens J. Deschaume O. Putzeys T. Eyley S. Thielemans W. Verhaert N. Bartic C. Sulfobetaine-based ultrathin coatings as effective antifouling layers for implantable neuroprosthetic devices. Biosens. Bioelectron. 2023 226 115121 10.1016/j.bios.2023.115121
    [Google Scholar]
  29. Schöneich C. Thiyl radical reactions in the chemical degradation of pharmaceutical proteins. Molecules 2019 24 23 4357 10.3390/molecules24234357
    [Google Scholar]
  30. Abazar F. Sharifi E. Noorbakhsh A. Antifouling properties of carbon quantum dots-based electrochemical sensor as a promising platform for highly sensitive detection of insulin. Microchem. J. 2022 180 107560 10.1016/j.microc.2022.107560
    [Google Scholar]
  31. Barfidokht A. Gooding J.J. Approaches toward allowing electroanalytical devices to be used in biological fluids. Electroanalysis 2014 26 6 1182 1196 10.1002/elan.201400097
    [Google Scholar]
  32. Kudr J. Michalek P. Ilieva L. Adam V. Zitka O. COVID-19: A challenge for electrochemical biosensors. Trends Analyt. Chem. 2021 136 116192 10.1016/j.trac.2021.116192
    [Google Scholar]
  33. Chen S. Xu L. Sheng K. Zhou Q. Dong B. Bai X. Lu G. Song H. A label-free electrochemical immunosensor based on facet-controlled Au nanorods/reduced graphene oxide composites for prostate specific antigen detection. Sens. Actuators B Chem. 2021 336 129748 10.1016/j.snb.2021.129748
    [Google Scholar]
  34. Wang X.Y. Feng Y.G. Wang A.J. Mei L.P. Yuan P.X. Luo X. Feng J.J. A facile ratiometric electrochemical strategy for ultrasensitive monitoring HER2 using polydopamine-grafted-ferrocene/reduced graphene oxide, Au@Ag nanoshuttles and hollow Ni@PtNi yolk-shell nanocages. Sens. Actuators B Chem. 2021 331 129460 10.1016/j.snb.2021.129460
    [Google Scholar]
  35. Muthukrishnan L. Imminent antimicrobial bioink deploying cellulose, alginate, EPS and synthetic polymers for 3D bioprinting of tissue constructs. Carbohydr. Polym. 2021 260 117774 10.1016/j.carbpol.2021.117774
    [Google Scholar]
  36. Silva T.A. Khan M.R.K. Fatibello-Filho O. Collinson M.M. Simultaneous electrochemical sensing of ascorbic acid and uric acid under biofouling conditions using nanoporous gold electrodes. J. Electroanal. Chem. (Lausanne) 2019 846 113160 10.1016/j.jelechem.2019.05.042
    [Google Scholar]
  37. Taurino I. Sanzò G. Antiochia R. Tortolini C. Mazzei F. Favero G. De Micheli G. Carrara S. Recent advances in Third Generation Biosensors based on Au and Pt Nanostructured Electrodes. Trends Analyt. Chem. 2016 79 151 159 10.1016/j.trac.2016.01.020
    [Google Scholar]
  38. Lin F.Y. Lee P.Y. Chu T.F. Peng C.I. Wang G.J. Neutral nonenzymatic glucose biosensors based on electrochemically deposited Pt/Au nanoalloy electrodes. Int. J. Nanomedicine 2021 16 5551 5563 10.2147/IJN.S321480
    [Google Scholar]
  39. Xie Y. Liu T. Chu Z. Jin W. Recent advances in electrochemical enzymatic biosensors based on regular nanostructured materials. J. Electroanal. Chem. (Lausanne) 2021 893 115328 10.1016/j.jelechem.2021.115328
    [Google Scholar]
  40. Xiao Z. Yang H. Yin S. Zhang J. Yang Z. Yuan K. Ding Y. Electrochemical reduction of functionalized carbonyl compounds: Enhanced reactivity over tailored nanoporous gold. Nanoscale 2020 12 7 4314 4319 10.1039/C9NR10564F
    [Google Scholar]
  41. Kim S.H. Nanoporous gold: Preparation and applications to catalysis and sensors. Curr. Appl. Phys. 2018 18 7 810 818 10.1016/j.cap.2018.03.021
    [Google Scholar]
  42. Kumar R.K.R. Kumar A. Chuang C.H. Shaikh M.O. Electrochemical immunosensor utilizing a multifunctional 3D nanocomposite coating with antifouling capability for urinary bladder cancer diagnosis. Sens. Actuators B Chem. 2023 384 133621 10.1016/j.snb.2023.133621
    [Google Scholar]
  43. del Rio J.S. Henry O.Y.F. Jolly P. Ingber D.E. An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids. Nat. Nanotechnol. 2019 14 12 1143 1149 10.1038/s41565‑019‑0566‑z
    [Google Scholar]
  44. Riazi H. Nemani S.K. Grady M.C. Anasori B. Soroush M. Ti 3 C 2 MXene–polymer nanocomposites and their applications. J. Mater. Chem. A Mater. Energy Sustain. 2021 9 13 8051 8098 10.1039/D0TA08023C
    [Google Scholar]
  45. He M. Gao K. Zhou L. Jiao Z. Wu M. Cao J. You X. Cai Z. Su Y. Jiang Z. Zwitterionic materials for antifouling membrane surface construction. Acta Biomater. 2016 40 142 152 10.1016/j.actbio.2016.03.038
    [Google Scholar]
  46. Huertas C.S. Soler M. Estevez M.C. Lechuga L.M. One-step immobilization of antibodies and dna on gold sensor surfaces via a poly-adenine oligonucleotide approach. Anal. Chem. 2020 92 18 12596 12604 10.1021/acs.analchem.0c02619
    [Google Scholar]
  47. Ju H. McCloskey B.D. Sagle A.C. Kusuma V.A. Freeman B.D. Preparation and characterization of crosslinked poly(ethylene glycol) diacrylate hydrogels as fouling-resistant membrane coating materials. J. Membr. Sci. 2009 330 1-2 180 188 10.1016/j.memsci.2008.12.054
    [Google Scholar]
  48. Ostuni E. Chapman R.G. Holmlin R.E. Takayama S. Whitesides G.M. A survey of structure−property relationships of surfaces that resist the adsorption of protein. Langmuir 2001 17 18 5605 5620 10.1021/la010384m
    [Google Scholar]
  49. Prime K.L. Whitesides G.M. Adsorption of proteins onto surfaces containing end-attached oligo(ethylene oxide): A model system using self-assembled monolayers. J. Am. Chem. 1993 115 23 10.1021/ja00076a032
    [Google Scholar]
  50. Zhang T. Xu Z. Xu H. Gu Y. Xing Y. Yan X. Liu H. Lu N. Song Y. Zhang S. Zhang Z. Yang M. Catechol and zwitterion-bifunctionalized poly(ethylene glycol) based ultrasensitive antifouling electrochemical aptasensor for the quantification of adenosine triphosphate in biological media. Sens. Actuators B Chem. 2019 288 469 475 10.1016/j.snb.2019.03.027
    [Google Scholar]
  51. Zhang P. Zhang Z. Wang D. Hao J. Cui J. Monodispersity of poly(ethylene glycol) matters for low-fouling coatings. ACS Macro Lett. 2020 9 10 1478 1482 10.1021/acsmacrolett.0c00557
    [Google Scholar]
  52. Lowe S. O’Brien-Simpson N.M. Connal L.A. Antibiofouling polymer interfaces: poly(ethylene glycol) and other promising candidates. Polym. Chem. 2015 6 2 198 212 10.1039/C4PY01356E
    [Google Scholar]
  53. Yang X. Chen P. Zhang X. Zhou H. Song Z. Yang W. Luo X. An electrochemical biosensor for HER2 detection in complex biological media based on two antifouling materials of designed recognizing peptide and PEG. Anal. Chim. Acta 2023 1252 341075 10.1016/j.aca.2023.341075
    [Google Scholar]
  54. González-Fernández E. Staderini M. Avlonitis N. Murray A.F. Mount A.R. Bradley M. Effect of spacer length on the performance of peptide-based electrochemical biosensors for protease detection. Sens. Actuators B Chem. 2018 255 3040 3046 10.1016/j.snb.2017.09.128
    [Google Scholar]
  55. Baggerman J. Smulders M.M.J. Zuilhof H. Romantic surfaces: A systematic overview of stable, biospecific, and antifouling zwitterionic surfaces. Langmuir 2019 35 5 1072 1084 10.1021/acs.langmuir.8b03360
    [Google Scholar]
  56. Goda T. Miyahara Y. Electrodeposition of zwitterionic pedot films for conducting and antifouling surfaces. Langmuir 2019 35 5 1126 1133 10.1021/acs.langmuir.8b01492
    [Google Scholar]
  57. Niu J. Wang H. Chen J. Chen X. Han X. Liu H. Bio-inspired zwitterionic copolymers for antifouling surface and oil-water separation. Colloids Surf. A Physicochem. Eng. Asp. 2021 626 127016 10.1016/j.colsurfa.2021.127016
    [Google Scholar]
  58. Bian Y. Pan Q. Zhu Y. Liang J. Zhang Y. Zhang Y. Zhang S. Qian S. Geng Z. You Z. Cieplak M. Sharma P.S. Zhang Y. He Y. Zhu B. Durable conducting polymer electrodes pursue low impedance, antifouling, and electrochemical stress tolerance. Appl. Surf. Sci. 2023 621 156902 10.1016/j.apsusc.2023.156902
    [Google Scholar]
  59. Lielpetere A. Jayakumar K. Leech D. Schuhmann W. Cross-linkable polymer-based multi-layers for protecting electrochemical glucose biosensors against uric acid, ascorbic acid, and biofouling interferences. ACS Sens. 2023 8 4 1756 1765 10.1021/acssensors.3c00050
    [Google Scholar]
  60. Wang Y. Shen J. Yuan J. Design of hemocompatible and antifouling PET sheets with synergistic zwitterionic surfaces. J. Colloid Interface Sci. 2016 480 205 217 10.1016/j.jcis.2016.07.022
    [Google Scholar]
  61. Saha P. Santi M. Emondts M. Roth H. Rahimi K. Großkurth J. Ganguly R. Wessling M. Singha N.K. Pich A. Stimuli-responsive zwitterionic core–shell microgels for antifouling surface coatings. ACS Appl. Mater. Interfaces 2020 12 52 58223 58238 10.1021/acsami.0c17427
    [Google Scholar]
  62. Zeng Y. Xiang Y. Sheng R. Tomás H. Rodrigues J. Gu Z. Zhang H. Gong Q. Luo K. Polysaccharide-based nanomedicines for cancer immunotherapy: A review. Bioact. Mater. 2021 6 10 3358 3382 10.1016/j.bioactmat.2021.03.008
    [Google Scholar]
  63. Eng Y.J. Nguyen T.M. Luo H.K. Chan J.M.W. Antifouling polymers for nanomedicine and surfaces: Recent advances. Nanoscale 2023 15 38 15472 15512 10.1039/D3NR03164K
    [Google Scholar]
  64. Wang W. Cui M. Song Z. Luo X. An antifouling electrochemical immunosensor for carcinoembryonic antigen based on hyaluronic acid doped conducting polymer PEDOT. RSC Advances 2016 6 91 88411 88416 10.1039/C6RA19169J
    [Google Scholar]
  65. Cui M. Sun X. Liu R. Du M. Song X. Wang S. Hu W. Luo X. A dual-responsive electrochemical biosensor based on artificial protein imprinted polymers and natural hyaluronic acid for sensitive recognition towards biomarker CD44. Sens. Actuators B Chem. 2022 371 132554 10.1016/j.snb.2022.132554
    [Google Scholar]
  66. Song Z. Li R. Yang X. Ambrosi A. Luo X. Ultralow fouling electrochemical detection of uric acid directly in serum based on phase-transited bovine serum albumin and conducting polymer. Chin. Chem. Lett. 2023 34 12 108314 10.1016/j.cclet.2023.108314
    [Google Scholar]
  67. Hoogenboom R. The future of poly(2-oxazoline)s. Eur. Polym. J. 2022 179 111521 10.1016/j.eurpolymj.2022.111521
    [Google Scholar]
  68. Chan D. Chien J.C. Axpe E. Blankemeier L. Baker S.W. Swaminathan S. Piunova V.A. Zubarev D.Y. Maikawa C.L. Grosskopf A.K. Mann J.L. Soh H.T. Appel E.A. Combinatorial polyacrylamide hydrogels for preventing biofouling on implantable biosensors. Adv. Mater. 2022 34 24 2109764 10.1002/adma.202109764
    [Google Scholar]
  69. Wu Y. Xia G. Zhang W. Chen K. Bi Y. Liu S. Zhang W. Liu R. Structural design and antimicrobial properties of polypeptides and saccharide–polypeptide conjugates. J. Mater. Chem. B Mater. Biol. Med. 2020 8 40 9173 9196 10.1039/D0TB01916J
    [Google Scholar]
  70. Li Y. Zhao S. Xu Z. Qiao X. Li M. Li Y. Luo X. Peptide nucleic acid and antifouling peptide based biosensor for the non-fouling detection of COVID-19 nucleic acid in saliva. Biosens. Bioelectron. 2023 225 115101 10.1016/j.bios.2023.115101
    [Google Scholar]
  71. Sfragano P.S. Moro G. Polo F. Palchetti I. The role of peptides in the design of electrochemical biosensors for clinical diagnostics. Biosensors (Basel) 2021 11 8 246 10.3390/bios11080246
    [Google Scholar]
  72. Li Z. Yin J. Gao C. Sheng L. Meng A. A glassy carbon electrode modified with graphene oxide, poly(3,4-ethylenedioxythiophene), an antifouling peptide and an aptamer for ultrasensitive detection of adenosine triphosphate. Mikrochim. Acta 2019 186 2 90 10.1007/s00604‑018‑3211‑x
    [Google Scholar]
  73. Xu Y. Wang X. Ding C. Luo X. Ratiometric antifouling electrochemical biosensors based on multifunctional peptides and mxene loaded with au nanoparticles and methylene blue. ACS Appl. Mater. Interfaces 2021 13 17 20388 20396 10.1021/acsami.1c04933
    [Google Scholar]
  74. Qiao X. Qian Z.H. Sun W. Zhu C.Y. Li Y. Luo X. Phosphorylation of oligopeptides: Design of ultra-hydrophilic zwitterionic peptides for anti-fouling detection of nucleic acids in saliva. Anal. Chem. 2023 95 29 11091 11098 10.1021/acs.analchem.3c01843
    [Google Scholar]
  75. Han R. Wang G. Xu Z. Zhang L. Li Q. Han Y. Luo X. Designed antifouling peptides planted in conducting polymers through controlled partial doping for electrochemical detection of biomarkers in human serum. Biosens. Bioelectron. 2020 164 112317 10.1016/j.bios.2020.112317
    [Google Scholar]
  76. Chen M. Song Z. Yang X. Song Z. Luo X. Antifouling peptides combined with recognizing DNA probes for ultralow fouling electrochemical detection of cancer biomarkers in human bodily fluids. Biosens. Bioelectron. 2022 206 114162 10.1016/j.bios.2022.114162
    [Google Scholar]
  77. Zhao S. Liu N. Wang W. Xu Z. Wu Y. Luo X. An electrochemical biosensor for alpha-fetoprotein detection in human serum based on peptides containing isomer D-Amino acids with enhanced stability and antifouling property. Biosens. Bioelectron. 2021 190 113466 10.1016/j.bios.2021.113466
    [Google Scholar]
  78. Gu S. Shi X.M. Zhang D. Fan G.C. Luo X. Peptide-based photocathodic biosensors: Integrating a recognition peptide with an antifouling peptide. Anal. Chem. 2021 93 4 2706 2712 10.1021/acs.analchem.0c05234
    [Google Scholar]
  79. Xu Y. Wang Z. Ding C. Luo X. Ratiometric antifouling electrochemiluminescence biosensor based on bi-functional peptides and low toxic quantum dots. Sens. Actuators B Chem. 2020 322 128613 10.1016/j.snb.2020.128613
    [Google Scholar]
  80. Li Y. Han R. Yu X. Jiang L. Luo X. A low-fouling electrochemical biosensor based on multifunction branched peptides with antifouling, antibacterial and recognizing sequences for protein detection in saliva. Sens. Actuators B Chem. 2024 405 135322 10.1016/j.snb.2024.135322
    [Google Scholar]
  81. Li Y. Chen Z. Li W. Zhang F. Yang X. Ding C. Peptide-antifouling interface for monitoring β-amyloid based on electrochemiluminescence resonance energy transfer. Talanta 2024 267 125229 10.1016/j.talanta.2023.125229
    [Google Scholar]
  82. Zhao S. Zhang Y. Xu Z. Wang H. Xu L. Wu Y. Zeng X. Luo X. A low-fouling electrochemical biosensor for biomarker detection in serum based on designed α/β-peptides with anti-enzymolysis and antifouling capabilities. Anal. Chim. Acta 2023 1263 341244 10.1016/j.aca.2023.341244
    [Google Scholar]
  83. Li Y. Pu X. Niu M. Fan X. Ding Y. Ma W. Gu Y. Engineering an antifouling electrochemical aptasensor based on a designed zwitterionic peptide for tetracycline detection in milk. Food Control 2023 153 109929 10.1016/j.foodcont.2023.109929
    [Google Scholar]
  84. Chen M. Song Z. Han R. Li Y. Luo X. Low fouling electrochemical biosensors based on designed Y-shaped peptides with antifouling and recognizing branches for the detection of IgG in human serum. Biosens. Bioelectron. 2021 178 113016 10.1016/j.bios.2021.113016
    [Google Scholar]
  85. Song Z. Ma Y. Chen M. Ambrosi A. Ding C. Luo X. Electrochemical biosensor with enhanced antifouling capability for COVID-19 Nucleic acid detection in complex biological media. Anal. Chem. 2021 93 14 5963 5971 10.1021/acs.analchem.1c00724
    [Google Scholar]
  86. Song Z. Chen M. Ding C. Luo X. Designed three-in-one peptides with anchoring, antifouling, and recognizing capabilities for highly sensitive and low-fouling electrochemical sensing in complex biological media. Anal. Chem. 2020 92 8 5795 5802 10.1021/acs.analchem.9b05299
    [Google Scholar]
  87. Liu N. Ma Y. Han R. Lv S. Wang P. Luo X. Antifouling biosensors for reliable protein quantification in serum based on designed all-in-one branched peptides. Chem. Commun. (Camb.) 2021 57 6 777 780 10.1039/D0CC07220F
    [Google Scholar]
  88. Ding Y. Zhang S. Zang X. Ding M. Ding C. Ratiometric antifouling electrochemical biosensors based on designed Y-shaped peptide and MXene loaded with Au@ZIF-67 and methylene blue. Mikrochim. Acta 2024 191 1 5 10.1007/s00604‑023‑06079‑1
    [Google Scholar]
  89. Hu J. Mao Z. Lu Y. Chen Q. Xia J. Deng H. Chen H. PD-L1 exosomes electrochemical sensor based on coordination of AgNCs and Zr4+: Multivalent peptide enhancing target capture efficiency and antifouling performance. Biosens. Bioelectron. 2023 235 115379 10.1016/j.bios.2023.115379
    [Google Scholar]
  90. Li Y. Han R. Feng J. Li J. Luo X. Phospholipid bilayer integrated with multifunctional peptide for ultralow-fouling electrochemical detection of HER2 in human serum. Anal. Chem. 2024 96 1 531 537 10.1021/acs.analchem.3c04701
    [Google Scholar]
  91. Du Q. Wang W. Zeng X. Luo X. Antifouling zwitterionic peptide hydrogel based electrochemical biosensor for reliable detection of prostate specific antigen in human serum. Anal. Chim. Acta 2023 1239 340674 10.1016/j.aca.2022.340674
    [Google Scholar]
  92. Han R. Hou W. Li Y. Chen M. Ding C. Luo X. The design of anti-fouling and anti-hydrolysis cyclic peptides for accurate electrochemical antigen testing in human blood. Sensors & Diagnostics 2023 2 2 382 389 10.1039/D2SD00213B
    [Google Scholar]
  93. Zhao S. Song Z. Liu T. Wang X. Li Y. Xu Y. Wang H. Wu Y. Luo X. Electrochemical detection of carcinoembryonic antigen in human serum based on designed anti-fouling and anti-enzymolysis peptides conjugated with silk sericine-inspired beta-homoserine. Sens. Actuators B Chem. 2023 378 133166 10.1016/j.snb.2022.133166
    [Google Scholar]
  94. Wu X. Ma P. Sun Y. Du F. Song D. Xu G. Application of MXene in electrochemical sensors: A review. Electroanalysis 2021 33 8 1827 1851 10.1002/elan.202100192
    [Google Scholar]
  95. Huang Y. Wu H. Xie N. Zhang X. Zou Z. Deng M. Cheng W. Guo X. Ding S. Guo B. Conductive antifouling sensing coating: A bionic design inspired by natural cell membrane. Adv. Healthc. Mater. 2023 12 13 2202790 10.1002/adhm.202202790
    [Google Scholar]
  96. Tang H.Z. Qu X.H. Zhang W.K. Chen X. Zhang S.T. Xu Y. Yang H.T. Wang Y. Yang J.P. Yuan W.E. Yue B. Photosensitizer nanodot eliciting immunogenicity for photo-immunologic therapy of postoperative methicillin-resistant infection and secondary recurrence. Adv. Mater. 2022 34 12 10.1002/adma.202107300
    [Google Scholar]
  97. Wang W. Han R. Tang K. Zhao S. Ding C. Luo X. Biocompatible peptide hydrogels with excellent antibacterial and catalytic properties for electrochemical sensing application. Anal. Chim. Acta 2021 1154 338295 10.1016/j.aca.2021.338295
    [Google Scholar]
  98. Li Y. Han R. Yu X. Chen M. Chao Q. Luo X. An antifouling and antibacterial electrochemical biosensor for detecting aminopeptidase N cancer biomarker in human urine. Sens. Actuators B Chem. 2022 373 132723 10.1016/j.snb.2022.132723
    [Google Scholar]
  99. Ding M. Zhang S. Wang J. Ding Y. Ding C. Ultrasensitive ratiometric electrochemiluminescence sensor with an efficient antifouling and antibacterial interface of PSBMA@SiO 2 -MXene for oxytetracycline trace detection in the marine environment. Anal. Chem. 2023 95 44 16327 16334 10.1021/acs.analchem.3c03555
    [Google Scholar]
  100. Barbosa J.R. Amorim P.H. Semaan F.S. de O. Gonçalves, M.C.; Dornellas, R.F.; Pereira, R.P. Evaluation of 3D printing parameters on the electrochemical performance of conductive polymeric components for chemical warfare agent sensing. Smart Innovation, Systems and Technologies Developments and Advances in Defense and Security 2019 425 35 10.1007/978‑981‑13‑9155‑2_34
    [Google Scholar]
/content/journals/cac/10.2174/0115734110320891240823065902
Loading
/content/journals/cac/10.2174/0115734110320891240823065902
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test