Skip to content
2000
Volume 22, Issue 1
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Background

Cocrystal engineering of Telmisartan (TEL, a poorly soluble antihypertensive agent) has been undertaken to improve its solubility for the last few years. However, apart from a few handpicked attempts, none of the attempts have been able to improve its solubility by more than 3-5 fold and augment its dissolution by more than 80%.

Methods

Addressing these shortcomings, herein, we have designed a novel Telmisartan-maleic acid (TM) cocrystal first by rational modelling with solvent-induced molecular mechanics (SIMM), based system optimization, descriptor analysis, and finally translating to cocrystals by wet grinding-gradient solvent evaporation method.

Results

Modelling revealed that binary solvent compared to single solvent imparted critical dynamics to seeding the co-crystallite and its structural archipelago. From single solvent to binary solvent, hydrogen bonding to nucleophilic addition of the coformer/s to the central ring revealed a crucial role in assigning the system geometry. The molecular descriptor plot of the generated subsystems (optimized by HF-SCF/def2-SVP method) showed that telmisartan: maleic acid molar ratio <=1:2 under ionizable conditions bear optimum hydrophilicity/hydrophobicity balance. Tonto-guided energy calculation revealed O--H and H--H as the predominant interactions for the crystal packing.

Conclusion

In translational research, our designed TM cocrystal (molar ratio 1:1.5 to 1:2, binary solvent dynamics) exhibited solubility improvement by more than 9 fold in water and showed to release about 92.19% of drugs within 2h (120 min), which superseded the previous reports in this field so far.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110319081240904074952
2024-10-10
2026-02-20
Loading full text...

Full text loading...

References

  1. DesirajuG.R. Crystal engineering: A brief overview.J. Chem. Sci.2010122566767510.1007/s12039‑010‑0055‑2
    [Google Scholar]
  2. PatelJ.R. CarltonR.A. NeedhamT.E. ChichesterC.O. VogtF.G. Preparation, structural analysis, and properties of tenoxicam cocrystals.Int. J. Pharm.20124361-268570610.1016/j.ijpharm.2012.07.034 22841852
    [Google Scholar]
  3. ShanN. ZaworotkoM.J. The role of cocrystals in pharmaceutical science.Drug Discov. Today2008139-1044044610.1016/j.drudis.2008.03.004 18468562
    [Google Scholar]
  4. BollaG. NangiaA. Pharmaceutical cocrystals: Walking the talk.Chem. Commun. (Camb.)201652548342836010.1039/C6CC02943D 27278109
    [Google Scholar]
  5. ChadhaR. BhandariS. HaneefJ. KhullarS. MandalS. Cocrystals of telmisartan: Characterization, structure elucidation, Iin vivo and toxicity studies.CrystEngComm201416368375838910.1039/C4CE00797B
    [Google Scholar]
  6. KuM.S. DulinW. A biopharmaceutical classification-based Right-First-Time formulation approach to reduce human pharmacokinetic variability and project cycle time from First-In-Human to clinical Proof-Of-Concept.Pharm. Dev. Technol.201217328530210.3109/10837450.2010.535826 21121705
    [Google Scholar]
  7. BlagdenN. de MatasM. GavanP.T. YorkP. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates.Adv. Drug Deliv. Rev.200759761763010.1016/j.addr.2007.05.011 17597252
    [Google Scholar]
  8. MiroshnykI. MirzaS. SandlerN. Pharmaceutical co-crystals–an opportunity for drug product enhancement.Expert Opin. Drug Deliv.20096433334110.1517/17425240902828304 19348603
    [Google Scholar]
  9. BoetkerJ. RaijadaD. AhoJ. KhorasaniM. SøgaardS.V. ArnfastL. BohrA. EdingerM. WaterJ.J. RantanenJ. In silico product design of pharmaceuticals.Asian J. Pharm. Sci.201611449249910.1016/j.ajps.2016.02.010
    [Google Scholar]
  10. SharpeM. JarvisB. GoaK.L. Telmisartan.Drugs200161101501152910.2165/00003495‑200161100‑00009 11558835
    [Google Scholar]
  11. TranP.H.L. TranH.T.T. LeeB.J. Modulation of microenvironmental pH and crystallinity of ionizable telmisartan using alkalizers in solid dispersions for controlled release.J. Control. Release20081291596510.1016/j.jconrel.2008.04.001 18501462
    [Google Scholar]
  12. StangierJ. SuC.A.P.F. RothW. Pharmacokinetics of orally and intravenously administered telmisartan in healthy young and elderly volunteers and in hypertensive patients.J. Int. Med. Res.200028414916710.1177/147323000002800401 11014323
    [Google Scholar]
  13. AkramM.A. NazirT. TahaN. AdilA. SarfrazM. NazirS.R. Designing, development and formulation of mouth disintegrating telmisartan tablet with extended release profile using response surface methodology.J. Bioequivalence Bioavailab.20157262266
    [Google Scholar]
  14. ZhangY. JiangT. ZhangQ. WangS. Inclusion of telmisartan in mesocellular foam nanoparticles: Drug loading and release property.Eur. J. Pharm. Biopharm.2010761172310.1016/j.ejpb.2010.05.010 20685333
    [Google Scholar]
  15. ZhongL. ZhuX. LuoX. SuW. Dissolution properties and physical characterization of telmisartan-chitosan solid dispersions prepared by mechanochemical activation.AAPS PharmSciTech201314254155010.1208/s12249‑013‑9937‑1 23430728
    [Google Scholar]
  16. ZhangY. ZhiZ. JiangT. ZhangJ. WangZ. WangS. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan.J. Control. Release2010145325726310.1016/j.jconrel.2010.04.029 20450945
    [Google Scholar]
  17. BhogalaB.R. BasavojuS. NangiaA. Tape and layer structures in cocrystals of some di- and tricarboxylic acids with 4,4′-bipyridines and isonicotinamide. From binary to ternary cocrystals.CrystEngComm200579055156210.1039/b509162d
    [Google Scholar]
  18. BisJ.A. ZaworotkoM.J. The 2-Aminopyridinium-carboxylate Supramolecular heterosynthon: A robust motif for generation of multiple-component crystals.Cryst. Growth Des.2005531169117910.1021/cg049622c
    [Google Scholar]
  19. NeeseF. The ORCA program system.Wiley Interdiscip. Rev. Comput. Mol. Sci.201221737810.1002/wcms.81
    [Google Scholar]
  20. NeeseF. Software update: The ORCA program system, version 4.0.Wiley Interdiscip. Rev. Comput. Mol. Sci.201881e132710.1002/wcms.1327
    [Google Scholar]
  21. ThompsonM.A. Molecular Docking Using ArgusLab, an Efficient Shape-Based Search Algorithm and the a Score Scoring Function.Scientific Res.200420041994078
    [Google Scholar]
  22. DhibarM. ChakrabortyS. BasakS. PattanayakP. ChatterjeeT. GhoshB. RaafatM. AbourehabM.A.S. Critical analysis and optimization of stoichiometric ratio of drug-coformer on cocrystal design: Molecular docking, in vitro and in vivo assessment.Pharmaceuticals (Basel)202316228410.3390/ph16020284 37259428
    [Google Scholar]
  23. DhibarM. ChakrabortyS. BasakS. Assessment of effects of solvents on cocrystallization by computational simulation approach.Curr. Drug Deliv.2021181445310.2174/1567201817666200804110837 32753012
    [Google Scholar]
  24. DhibarM. ChakrabortyS. KhandaiM. Solid state manipulation of telmisartan via mechanochemical activation with kaolin: An assessment of biopharmaceutical properties of amorphous phase and its physical stability.Int. J. Pharm. Sci. Res.20211250305039
    [Google Scholar]
  25. HanY. PanN. LiD. LiuS. SunB. ChaiJ. LiD. Formation mechanism of surfactant-free microemulsion and a judgment on whether it can be formed in one ternary system.Chem. Eng. J.202243713538510.1016/j.cej.2022.135385
    [Google Scholar]
  26. HaneefJ. AroraP. ChadhaR. Implication of coformer structural diversity on cocrystallization outcomes of telmisartan with improved biopharmaceutical performance.AAPS PharmSciTech20202111010.1208/s12249‑019‑1559‑9 31802267
    [Google Scholar]
  27. CorriganO.I. StanleyC.T. Mechanism of drug dissolution rate enhancement from β-cyclodextrin-drug systems.J. Pharm. Pharmacol.2011341062162610.1111/j.2042‑7158.1982.tb04689.x 6128383
    [Google Scholar]
  28. KulkarniA. SheteS. HolV. BachhavR. Novel pharmaceutical cocrystal of telmisartan and hydrochlorothiazide.Asian J. Pharm. Clin. Res.20201310411210.22159/ajpcr.2020.v13i3.36541
    [Google Scholar]
  29. KunduS. KumariN. SoniS.R. RanjanS. KumarR. SharonA. GhoshA. Enhanced solubility of telmisartan phthalic acid cocrystals withinthe pH range of a systemic absorption site.ACS Omega2018311153801538810.1021/acsomega.8b02144 31458196
    [Google Scholar]
  30. AlatasF. RatihH. SoewandhiS.N. Enhancement of solubility and dissolution rate of telmisartan by telmisartan-oxalic acid cocrystal formation.Int. J. Pharm. Pharm. Sci.20157423426
    [Google Scholar]
  31. AroraP. KaurA. HaneefJ. ChadhaR. Solubility improvement of telmisartan by cocrystallization with citric acid.Int. J. Pharm. Sci. Res.2017837683775
    [Google Scholar]
  32. MasodkarS.R. PandeS.D. AtramS.C. Development and characterization of telmisartan tablet by the use of cocrystallization technique.World J. Pharm. Pharm. Sci.20187651669
    [Google Scholar]
/content/journals/cac/10.2174/0115734110319081240904074952
Loading
/content/journals/cac/10.2174/0115734110319081240904074952
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test