Skip to content
2000
image of Prediction of Chemistry of Cocrystallization and its Realistic Impact on the Enhancement of Solubility and Dissolution of Telmisartan: Molecular mechanics, ab initio and Descriptor Analysis

Abstract

Background

Cocrystal engineering of Telmisartan (TEL, a poorly soluble antihypertensive agent) has been undertaken to improve its solubility for the last few years. However, apart from a few handpicked attempts, none of the attempts have been able to improve its solubility by more than 3-5 fold and augment its dissolution by more than 80%.

Method

Addressing these shortcomings, herein, we have designed a novel Telmisartan-maleic acid (TM) cocrystal first by rational modelling with solvent-induced molecular mechanics (SIMM), based system optimization, descriptor analysis, and finally translating to cocrystals by wet grinding-gradient solvent evaporation method.

Results

Modelling revealed that binary solvent compared to single solvent imparted critical dynamics to seeding the co-crystallite and its structural archipelago. From single solvent to binary solvent, hydrogen bonding to nucleophilic addition of the coformer/s to the central ring revealed a crucial role in assigning the system geometry. The molecular descriptor plot of the generated subsystems (optimized by HF-SCF/def2-SVP method) showed that telmisartan: maleic acid molar ratio <=1:2 under ionizable conditions bear optimum hydrophilicity/hydrophobicity balance. Tonto-guided energy calculation revealed O--H and H--H as the predominant interactions for the crystal packing.

Conclusion

In translational research, our designed TM cocrystal (molar ratio 1:1.5 to 1:2, binary solvent dynamics) exhibited solubility improvement by more than 9 fold in water and showed to release about 92.19% of drugs within 2h (120 min), which superseded the previous reports in this field so far.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110319081240904074952
2024-10-10
2025-02-17
Loading full text...

Full text loading...

References

  1. Desiraju G.R. Crystal engineering: A brief overview. J. Chem. Sci. 2010 122 5 667 675 10.1007/s12039‑010‑0055‑2
    [Google Scholar]
  2. Patel J.R. Carlton R.A. Needham T.E. Chichester C.O. Vogt F.G. Preparation, structural analysis, and properties of tenoxicam cocrystals. Int. J. Pharm. 2012 436 1-2 685 706 10.1016/j.ijpharm.2012.07.034 22841852
    [Google Scholar]
  3. Shan N. Zaworotko M.J. The role of cocrystals in pharmaceutical science. Drug Discov. Today 2008 13 9-10 440 446 10.1016/j.drudis.2008.03.004 18468562
    [Google Scholar]
  4. Bolla G. Nangia A. Pharmaceutical cocrystals: Walking the talk. Chem. Commun. (Camb.) 2016 52 54 8342 8360 10.1039/C6CC02943D 27278109
    [Google Scholar]
  5. Chadha R. Bhandari S. Haneef J. Khullar S. Mandal S. Cocrystals of telmisartan: Characterization, structure elucidation, Iin vivo and toxicity studies. CrystEngComm 2014 16 36 8375 8389 10.1039/C4CE00797B
    [Google Scholar]
  6. Ku M.S. Dulin W. A biopharmaceutical classification-based Right-First-Time formulation approach to reduce human pharmacokinetic variability and project cycle time from First-In-Human to clinical Proof-Of-Concept. Pharm. Dev. Technol. 2012 17 3 285 302 10.3109/10837450.2010.535826 21121705
    [Google Scholar]
  7. Blagden N. de Matas M. Gavan P.T. York P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Deliv. Rev. 2007 59 7 617 630 10.1016/j.addr.2007.05.011 17597252
    [Google Scholar]
  8. Miroshnyk I. Mirza S. Sandler N. Pharmaceutical co-crystals–an opportunity for drug product enhancement. Expert Opin. Drug Deliv. 2009 6 4 333 341 10.1517/17425240902828304 19348603
    [Google Scholar]
  9. Boetker J. Raijada D. Aho J. Khorasani M. Søgaard S.V. Arnfast L. Bohr A. Edinger M. Water J.J. Rantanen J. In silico product design of pharmaceuticals. Asian J. Pharmaceut. Sci. 2016 11 4 492 499 10.1016/j.ajps.2016.02.010
    [Google Scholar]
  10. Sharpe M. Jarvis B. Goa K.L. Telmisartan. Drugs 2001 61 10 1501 1529 10.2165/00003495‑200161100‑00009 11558835
    [Google Scholar]
  11. Tran P.H.L. Tran H.T.T. Lee B.J. Modulation of microenvironmental pH and crystallinity of ionizable telmisartan using alkalizers in solid dispersions for controlled release. J. Control. Release 2008 129 1 59 65 10.1016/j.jconrel.2008.04.001 18501462
    [Google Scholar]
  12. Stangier J. Su C.A.P.F. Roth W. Pharmacokinetics of orally and intravenously administered telmisartan in healthy young and elderly volunteers and in hypertensive patients. J. Int. Med. Res. 2000 28 4 149 167 10.1177/147323000002800401 11014323
    [Google Scholar]
  13. Akram M.A. Nazir T. Taha N. Adil A. Sarfraz M. Nazir S.R. Designing, development and formulation of mouth disintegrating telmisartan tablet with extended release profile using response surface methodology. J. Bioequivalence Bioavailab. 2015 7 262 266
    [Google Scholar]
  14. Zhang Y. Jiang T. Zhang Q. Wang S. Inclusion of telmisartan in mesocellular foam nanoparticles: Drug loading and release property. Eur. J. Pharm. Biopharm. 2010 76 1 17 23 10.1016/j.ejpb.2010.05.010 20685333
    [Google Scholar]
  15. Zhong L. Zhu X. Luo X. Su W. Dissolution properties and physical characterization of telmisartan-chitosan solid dispersions prepared by mechanochemical activation. AAPS PharmSciTech 2013 14 2 541 550 10.1208/s12249‑013‑9937‑1 23430728
    [Google Scholar]
  16. Zhang Y. Zhi Z. Jiang T. Zhang J. Wang Z. Wang S. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan. J. Control. Release 2010 145 3 257 263 10.1016/j.jconrel.2010.04.029 20450945
    [Google Scholar]
  17. Bhogala B.R. Basavoju S. Nangia A. Tape and layer structures in cocrystals of some di- and tricarboxylic acids with 4,4′-bipyridines and isonicotinamide. From binary to ternary cocrystals. CrystEngComm 2005 7 90 551 562 10.1039/b509162d
    [Google Scholar]
  18. Bis J.A. Zaworotko M.J. The 2-Aminopyridinium-carboxylate Supramolecular heterosynthon: A robust motif for generation of multiple-component crystals. Cryst. Growth Des. 2005 5 3 1169 1179 10.1021/cg049622c
    [Google Scholar]
  19. Neese F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012 2 1 73 78 10.1002/wcms.81
    [Google Scholar]
  20. Neese F. Software update: The ORCA program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018 8 1 e1327 10.1002/wcms.1327
    [Google Scholar]
  21. Thompson M.A. Molecular Docking Using ArgusLab, an Efficient Shape-Based Search Algorithm and the a Score Scoring Function. Scientific Res. 2004 2004 1994078
    [Google Scholar]
  22. Dhibar M. Chakraborty S. Basak S. Pattanayak P. Chatterjee T. Ghosh B. Raafat M. Abourehab M.A.S. Critical Analysis and Optimization of Stoichiometric Ratio of Drug-Coformer on Cocrystal Design: Molecular Docking, In Vitro and In Vivo Assessment. Pharmaceuticals (Basel) 2023 16 2 284 10.3390/ph16020284 37259428
    [Google Scholar]
  23. Dhibar M. Chakraborty S. Basak S. Assessment of effects of solvents on cocrystallization by computational simulation approach. Curr. Drug Deliv. 2021 18 1 44 53 10.2174/1567201817666200804110837 32753012
    [Google Scholar]
  24. Dhibar M. Chakraborty S. Khandai M. Solid state manipulation of telmisartan via mechanochemical activation with kaolin: An assessment of biopharmaceutical properties of amorphous phase and its physical stability. Int. J. Pharm. Sci. Res. 2021 12 5030 5039
    [Google Scholar]
  25. Han Y. Pan N. Li D. Liu S. Sun B. Chai J. Li D. Formation mechanism of surfactant-free microemulsion and a judgment on whether it can be formed in one ternary system. Chem. Eng. J. 2022 437 135385 10.1016/j.cej.2022.135385
    [Google Scholar]
  26. Haneef J. Arora P. Chadha R. Implication of coformer structural diversity on cocrystallization outcomes of telmisartan with improved biopharmaceutical performance. AAPS PharmSciTech 2020 21 1 10 10.1208/s12249‑019‑1559‑9 31802267
    [Google Scholar]
  27. Corrigan O.I. Stanley C.T. Mechanism of drug dissolution rate enhancement from β-cyclodextrin-drug systems. J. Pharm. Pharmacol. 2011 34 10 621 626 10.1111/j.2042‑7158.1982.tb04689.x 6128383
    [Google Scholar]
  28. Kulkarni A. Shete S. Hol V. Bachhav R. Novel pharmaceutical cocrystal of telmisartan and hydrochlorothiazide. Asian J. Pharm. Clin. Res. 2020 13 104 112 10.22159/ajpcr.2020.v13i3.36541
    [Google Scholar]
  29. Kundu S. Kumari N. Soni S.R. Ranjan S. Kumar R. Sharon A. Ghosh A. Enhanced solubility of telmisartan phthalic acid cocrystals withinthe pH range of a systemic absorption site. ACS Omega 2018 3 11 15380 15388 10.1021/acsomega.8b02144 31458196
    [Google Scholar]
  30. Alatas F. Ratih H. Soewandhi S.N. Enhancement of solubility and dissolution rate of telmisartan by telmisartan-oxalic acid cocrystal formation. Int. J. Pharm. Pharm. Sci. 2015 7 423 426
    [Google Scholar]
  31. Arora P. Kaur A. Haneef J. Chadha R. Solubility improvement of telmisartan by cocrystallization with citric acid. Int. J. Pharm. Sci. Res. 2017 8 3768 3775
    [Google Scholar]
  32. Masodkar S.R. Pande S.D. Atram S.C. Development and characterization of telmisartan tablet by the use of cocrystallization technique. World J. Pharm. Pharm. Sci. 2018 7 651 669
    [Google Scholar]
/content/journals/cac/10.2174/0115734110319081240904074952
Loading
/content/journals/cac/10.2174/0115734110319081240904074952
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test