Skip to content
2000
image of An Efficient and Cost-effective Modified Carbon Paste Electrodes for Diltiazem Hydrochloride Determination in Tablets

Abstract

Background and Objective

This study presented new sensitive and selective modified carbon paste (MCPE) potentiometric sensors modified with different ion pairs for the determination of the antihypertensive drug diltiazem hydrochloride (DTM-HCl) in biological fluids, pharmaceutical preparations, and in its pure form.

Methods

Plasticizers, ion pair type, ion pair content, response time, temperature, and pH were just a few of the experimental factors evaluated that were found to affect electrode efficiency. The two electrodes that show the best sensitivity were prepared by mixing diltiazem-tetraphenyl borate (DTM-TPB) ion pair, graphite, and TCP or -NPOE as a plasticizer.

Result

Over the concentration ranges of 1.0x10-5–1.0x10-2, the produced electrodes I and II demonstrated monovalent Nernstian responses of 55.7±0.902 and 57.6±0.451 mV decade-1. The selectivity property of the suggested electrodes was used to study the interference ions. The concentration of DTM-HCl in pharmaceutical formulations and biological fluids was measured using these modified electrodes. During the validation procedure, metrics like linearity, accuracy, precision, limit of detection, limit of quantification, and specificity were used.

Conclusion

The obtained results showed good agreement with the HPLC technique as indicated by the F and t-test values and can conclude the possibility of using this potentiometric method in the routine analysis of DTM-HCl.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110314443240828050045
2024-09-02
2024-11-23
Loading full text...

Full text loading...

References

  1. Oldetapia C.A. Rasyid R. Rivai H. Review of diltiazem analysis methods during 2010-2020. World J. Pharm. Pharm. Sci. 2020 9 7 352 372
    [Google Scholar]
  2. Mahajan N. Deshmukh S. Farooqui M. A novel stability-indicating method for known and unknown impurities profiling for diltiazem hydrochloride pharmaceutical dosage form (tablets). Future J. Pharm. Sci. 2021 7 1 204 10.1186/s43094‑021‑00352‑x
    [Google Scholar]
  3. Henry P.D. Comparative pharmacology of calcium antagonists: Nifedipine, verapamil and diltiazem. Am. J. Cardiol. 1980 46 6 1047 1058 10.1016/0002‑9149(80)90366‑5 6255787
    [Google Scholar]
  4. Chatpalliwar V.A. Porwal P.K. Upmanyu N. Validated gradient stability indicating HPLC method for determining Diltiazem Hydrochloride and related substances in bulk drug and novel tablet formulation. J. Pharm. Anal. 2012 2 3 226 237 10.1016/j.jpha.2012.01.003 29403747
    [Google Scholar]
  5. Arafat M.O.S.A.B. Simple HPLC validated method for the determination of diltiazem hydrochloride in human plasma. Int. J. Pharm. Pharm. Sci. 2014 6 9 213 216
    [Google Scholar]
  6. Sadeghi F. Validation and uncertainty estimation of an ecofriendly and stability‐indicating HPLC method for determination of diltiazem in pharmaceutical preparations. J. Anal. Methods Chem. 2013 2013 1 353814 10.1155/2013/353814
    [Google Scholar]
  7. Ishii K. Minato K. Nakai H. Sato T. Simultaneous assay of four stereoisomers of diltiazem hydrochloride. Application to in vitro chiral inversion studies. Chromatographia 1995 41 5-6 450 454 10.1007/BF02688067
    [Google Scholar]
  8. Artalejo-Ortega B. Analytical validation: Application to a high performance liquid chromatography method to analize diltiazem hydrochloride solid dosage forms. Ciencia. Pharmaceutica. 1997 7 20 30
    [Google Scholar]
  9. Razzaq R. Ranjha N.M. Rashid R. Rashid Z. Hanif M. Determination of diltiazem HCL by reverse phase high performance liquid chromatography in rabbit plasma. Curr. Pharm. Anal. 2018 14 2 153 156 10.2174/1573412913666161207162059
    [Google Scholar]
  10. Shafi N. An overview of analytical determination of diltiazem, cimetidine, ranitidine, and famotidine by UV spectrophotometry and HPLC technique. J. Chem. 2013 2013 1 184948 10.1155/2013/184948
    [Google Scholar]
  11. Tang L. Zhang T. Li X.Z. Determination of diltiazem hydrochloride injection by high-performance liquid chromatography. Zhong Nan Da Xue Xue Bao Yi Xue Ban 2006 31 5 756 758
    [Google Scholar]
  12. Souza M.A.C. Pereira C.E.O. Nogueira F.H.A. Pianetti G.A. Development and validation of a stability indicating HPLC method to determine diltiazem hydrochloride in tablets and compounded capsules. Braz. J. Pharm. Sci. 2017 53 3 53 10.1590/s2175‑97902017000300041
    [Google Scholar]
  13. Clozel J.P. Caillé G. Taeymans Y. Théroux P. Biron P. Besner J.G. Improved gas chromatographic determination of diltiazem and deacetyldiltiazem in human plasma. J. Pharm. Sci. 1984 73 2 207 209 10.1002/jps.2600730215 6707884
    [Google Scholar]
  14. Grech-Belanger O. Leboeuf E. Langlois S. Assay of diltiazem and deacetyldiltiazem by capillary gas chromatography. J. Chromatogr., Biomed. Appl. 1987 417 1 89 98 10.1016/0378‑4347(87)80094‑4 3624405
    [Google Scholar]
  15. Devarajan P.V. Dhavse V.V. High-performance thin-layer chromatographic determination of diltiazem hydrochloride as bulk drug and in pharmaceutical preparations. J. Chromatogr., Biomed. Appl. 1998 706 2 362 366 10.1016/S0378‑4347(97)00548‑3 9551826
    [Google Scholar]
  16. Rahman N. >Multispectroscopic and molecular docking studies on the interaction of diltiazem hydrochloride with bovine serum albumin and its application to the quantitative determination of diltiazem hydrochloride. J. King Saud Univ. Sci. 2022 2022 102267 10.1016/j.jksus.2022.102267
    [Google Scholar]
  17. El-Didamony A.M. Indirect spectrophotometric determination of diltiazem hydrochloride in pure form and pharmaceutical formulations. Cent. Eur. J. Chem. 2005 3 3 520 536
    [Google Scholar]
  18. Rahman N. Azmi S.N.H. Spectrophotometric determination of diltiazem hydrochloride with sodium metavanadate. Microchem. J. 2000 65 1 39 43 10.1016/S0026‑265X(00)00025‑4
    [Google Scholar]
  19. Ayad M.M. Abdellatef H.E. Hosny M.M. Sharaf Y.A. Application of 4-chloro-7-nitrobenzofurazan for the analysis of propafenone and diltiazem hydrochlorides using kinetic spectrophotometric and spectrofluorimetric methods. Eur. J. Chem. 2013 4 1 35 43 10.5155/eurjchem.4.1.35‑43.713
    [Google Scholar]
  20. Omar M. Abdelmageed O. Abdelgaber A. Saleh S. Spectrophotometric determination of some calcium channel blockers using Sulfochlorophenol-S, Bromopyrogallol red, Eriochromecyanine-R and Pyrocatechoil violet. Nat. Sci. 2013 5 514 525
    [Google Scholar]
  21. Development and validation of a dissolution test for diltiazem hydrochloride in immediate release capsules. Quim. Nova 2011 34 520 526
    [Google Scholar]
  22. Raouf G. Himan A. Determination of diltiazem HCL using UV-VIS absorption spectra based on multivariate calibration in pharmaceutical dosage forms. Iranian Seminar of Analytical Chemistry 2015 2015 21 514 525
    [Google Scholar]
  23. Shrivastava, Rupali Spectrophotometric determination of diltiazem in pharmaceutical and in-vivo samples with Pd (II). Int. J. Pharm. Sci. Res. 2013 2013 4676
    [Google Scholar]
  24. A novel method development and validation of deltiazem hydrochloride in pure and pharmaceutical dosage forms by using uv-spectrophotometric method. American J. Pharmat. Research. 2019 9 6 2249 3387
    [Google Scholar]
  25. Dobson S.R. Mauro V.F. Boddu S.H.S. Churchwell M.D. The physical compatibility of clinically used concentrations of diltiazem hydrochloride with heparin sodium. J. Pharm. Technol. 2020 36 4 126 129 10.1177/8755122520924767 34752540
    [Google Scholar]
  26. Li N. He S. Li C. Yang F. Dong Y. Sensitive analysis of metoprolol tartrate and diltiazem hydrochloride in human serum by capillary zone electrophoresis combining on column field-amplified sample injection. J. Chromatogr. Sci. 2021 59 5 465 472 10.1093/chromsci/bmab025 33675354
    [Google Scholar]
  27. Deng B. Lu H. Li L. Shi A. Kang Y. Xu Q. Determination of the number of binding sites and binding constant between diltiazem hydrochloride and human serum albumin by ultrasonic microdialysis coupled with online capillary electrophoresis electrochemiluminescence. J. Chromatogr. A 2010 1217 28 4753 4756 10.1016/j.chroma.2010.05.021 20965079
    [Google Scholar]
  28. Salamanca-Neto C.A.R. Felsner M.L. Galli A. Sartori E.R. In-house validation of a totally aqueous voltammetric method for determination of diltiazem hydrochloride. J. Electroanal. Chem. 2019 837 159 166 10.1016/j.jelechem.2019.02.026
    [Google Scholar]
  29. Attaran A.M. Abdol-Manafi S. Javanbakht M. Enhessari M. Voltammetric sensor based on Co3O4/SnO2 nanopowders for determination of diltiazem in tablets and biological fluids. J. Nanostructure Chem. 2016 6 2 121 128 10.1007/s40097‑015‑0186‑6
    [Google Scholar]
  30. Ostovar S. Maghsoudi S. Mousavi M. Development of a sensitive voltammetric sensor for diltiazem determination in biological samples using MWCNT/PPy-PBA modified glassy carbon electrode. Synth. Met. 2021 281 116928 10.1016/j.synthmet.2021.116928
    [Google Scholar]
  31. El Badry Mohamed M. El‐Taib Heakal F. Potential application of carbon‐based electrical sensor for the highly sensitive diltiazem HCL quantification in its pharmaceutical products and biological samples. Electroanalysis 2023 35 2
    [Google Scholar]
  32. Sposito H.G.M. Lobato A. Tasić N. Maldaner A.O. Paixão T.R.L.C. Gonçalves L.M. Swift electrochemical sensing of diltiazem employing highly-selective molecularly-imprinted 3-amino-4-hydroxybenzoic acid. J. Electroanal. Chem. 2022 911 116207 10.1016/j.jelechem.2022.116207
    [Google Scholar]
  33. Rita I.L.C. Cathodic voltammetric detection of diltiazem at a bismuth film electrode: Application to human urine and pharmaceuticals. J. Brazilian Chemical Society. 2014 2014 961 968
    [Google Scholar]
  34. Sanchez M.A. Liquid–liquid microextraction without phase separation in a multicommuted flow system for diltiazem determination in pharmaceuticals. Anal. Chim. Acta 2011 95 99
    [Google Scholar]
  35. Zayed M.A. Abbas A.A. Mahmoud W.H. Ali A.E. Mohamed G.G. Development and surface characterization of a bis(aminotriazoles) derivative based renewable carbon paste electrode for selective potentiometric determination of Cr(III) ion in real water samples. Microchem. J. 2020 159 105478 10.1016/j.microc.2020.105478
    [Google Scholar]
  36. El-Dien F.A.N. Mohamed G.G. Frag E.Y.Z. Mohamed M.E-B. Modified screen printed and carbon paste ion selective electrodes for potentiometric determination of naphazoline hydrochloride in pure and pharmaceutical preparations. Int. J. Electrochem. Sci. 2012 7 10 10266 10281 10.1016/S1452‑3981(23)16275‑4
    [Google Scholar]
  37. Frag E.Y.Z. Mohamed A.M.K. Alrahmony E.E. Construction and performance characterization of ion selective electrodes for potentiometric determination of ranitidine hydrochloride in pharmaceutical preparations and biological fluids. Int. J. Electrochem. Sci. 2011 2011 3508 3524
    [Google Scholar]
  38. Vytřas K. Švancara I. Metelka R. Carbon paste electrodes in electroanalytical chemistry. J. Serb. Chem. Soc. 2009 74 10 1021 1033 10.2298/JSC0910021V
    [Google Scholar]
  39. Elashery S.E.A. Frag E.Y. Sleim A.A.E. Novel and selective potentiometric sensors for Cinchocaine HCl determination in its pure and Co-formulated dosage form: A comparative study of in situ carbon sensors based on different ion pairing agents. Measurement 2021 173 108549 10.1016/j.measurement.2020.108549
    [Google Scholar]
  40. Buck R.P. Lindner E. Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994). Pure Appl. Chem. 1994 66 12 2527 2536 10.1351/pac199466122527
    [Google Scholar]
  41. Ali T.A. Mohamed G.G. El-Dessouky M.M.I. Abou El Ella S.M. Mohamed R.T.F. Modified carbon paste ion selective electrodes for the determination of iron (III) in water, soil and fish tissue samples. Int. J. Electrochem. Sci. 2013 8 1 1469 1486 10.1016/S1452‑3981(23)14112‑5
    [Google Scholar]
  42. Umezawa Y. Bühlmann P. Umezawa K. Tohda K. Amemiya S. Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic cations (Technical report). Pure Appl. Chem. 2000 72 10 1851 2082 10.1351/pac200072101851
    [Google Scholar]
  43. Tohda K. Dragoe D. Shibata M. Umezawa Y. Studies on the matched potential method for determining the selectivity coefficients of ion-selective electrodes based on neutral ionophores: Experimental and theoretical verification. Anal. Sci. 2001 17 6 733 743 10.2116/analsci.17.733 11707944
    [Google Scholar]
  44. Guideline, ICH Harmonised Tripartite. Validation of analytical procedures: Text and methodology, Q2 (R1) 1.20. 2005
    [Google Scholar]
/content/journals/cac/10.2174/0115734110314443240828050045
Loading
/content/journals/cac/10.2174/0115734110314443240828050045
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: HPLC ; diltiazem hydrochloride ; Sensors ; biological fluids ; pharmaceutical preparations
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test