Skip to content
2000
Volume 21, Issue 2
  • ISSN: 1573-4110
  • E-ISSN: 1875-6727

Abstract

Objectives

The study aimed to evaluate the cytotoxicity and anticancer potential of gold nanorods (GNRs) synthesized using hexadecyltrimethylammonium bromide capped seed (CTAB) on L929 fibroblast cells and glioma cells.

Methods

Gold nanorods were synthesized through the CTAB method, and their characterization was conducted using UV-Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), and scanning electron microscopy (SEM). The MTT cell viability assay was employed to assess the cytotoxic and anticancer effects of the synthesized gold nanorods on L929 fibroblast cells and glioma cells.

Results

Analysis results revealed that the synthesized gold nanorods had an average size of 6.4 nm and rod-like morphology, with an absorbance peak of 836 nm. The quantity of synthesized GNRs was calculated to be 3.63 µM. Cytotoxicity analysis showed an IC value of 1.29 µM for L929 fibroblast cells and 1.26 µM for C6 glioma cells, indicating significant cytotoxic effects. Treatment with GNRs induced apoptosis in glioma cells and inhibited their proliferation, suggesting potential anticancer activity.

Conclusion

The findings suggest that GNRs hold promise as effective agents for cancer therapy. Further research is warranted to elucidate the precise mechanisms underlying their anticancer effects and to explore their potential clinical applications in cancer treatment.

Loading

Article metrics loading...

/content/journals/cac/10.2174/0115734110304016240530075916
2025-02-01
2025-01-13
Loading full text...

Full text loading...

References

  1. PaulmuruganR. MassoudT.F., Eds.; Glioblastoma resistance to chemotherapy: Molecular mechanisms and innovative reversal strategies;Academic Press: Cambridge, Massachusetts2021
    [Google Scholar]
  2. WuW. KlockowJ.L. ZhangM. LafortuneF. ChangE. JinL. WuY. Daldrup-LinkH.E. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance.Pharmacol. Res.202117110578010.1016/j.phrs.2021.105780 34302977
    [Google Scholar]
  3. ChatterjeeP. KumarS. Current developments in nanotechnology for cancer treatment.Mater. Today Proc.2022481754175810.1016/j.matpr.2021.10.048
    [Google Scholar]
  4. SiddiqueS. ChowJ.C.L. Gold nanoparticles for drug delivery and cancer therapy.Appl. Sci. (Basel)20201011382410.3390/app10113824
    [Google Scholar]
  5. KavalarakiA. SpyratouE. KouriM.A. EfstathopoulosE.P. Gold nanoparticles as contrast agents in ophthalmic imaging.Optics202341749910.3390/opt4010007
    [Google Scholar]
  6. LuoD. WangX. BurdaC. BasilionJ.P. Recent development of gold nanoparticles as contrast agents for cancer diagnosis.Cancers (Basel)2021138182510.3390/cancers13081825 33920453
    [Google Scholar]
  7. FanM. HanY. GaoS. YanH. CaoL. LiZ. LiangX.J. ZhangJ. Ultrasmall gold nanoparticles in cancer diagnosis and therapy.Theranostics202010114944495710.7150/thno.42471 32308760
    [Google Scholar]
  8. ShuklaN. SinghB. KimH.J. ParkM.H. KimK. Combinational chemotherapy and photothermal therapy using a gold nanorod platform for cancer treatment.Part. Part. Syst. Charact.2020378200009910.1002/ppsc.202000099
    [Google Scholar]
  9. NejabatM. SamieA. RamezaniM. AlibolandiM. AbnousK. TaghdisiS.M. An overview on gold nanorods as versatile nanoparticles in cancer therapy.J. Control. Release202335422124210.1016/j.jconrel.2023.01.009 36621644
    [Google Scholar]
  10. LakhaniP.M. RompicharlaS.V.K. GhoshB. BiswasS. An overview of synthetic strategies and current applications of gold nanorods in cancer treatment.Nanotechnology2015264343200110.1088/0957‑4484/26/43/432001 26446935
    [Google Scholar]
  11. NikoobakhtB. El-SayedM.A. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method.Chem. Mater.200315101957196210.1021/cm020732l
    [Google Scholar]
  12. VermaS.S. SekhonJ.S. Influence of aspect ratio and surrounding medium on Localized Surface Plasmon Resonance (LSPR) of gold nanorod.J. Opt.2012412899310.1007/s12596‑012‑0068‑y
    [Google Scholar]
  13. LewinskiN. ColvinV. DrezekR. Cytotoxicity of nanoparticles.Small2008412649
    [Google Scholar]
  14. SkeelR.T. KhleifS.N. Eds.; Handbook of cancer chemotherapy.Philadelphia, PALippincott Williams & Wilkins2011
    [Google Scholar]
  15. HuangX. NeretinaS. El-SayedM.A. Gold nanorods: From synthesis and properties to biological and biomedical applications.Adv. Mater.200921484880491010.1002/adma.200802789 25378252
    [Google Scholar]
  16. MarangoniV. Cancino-BernardiJ. ZucolottoV. Synthesis, physico-chemical properties, and biomedical applications of gold nanorods—a review.J. Biomed. Nanotechnol.20161261136115810.1166/jbn.2016.2218 27319210
    [Google Scholar]
  17. NiidomeT. YamagataM. OkamotoY. AkiyamaY. TakahashiH. KawanoT. KatayamaY. NiidomeY. PEG-modified gold nanorods with a stealth character for in vivo applications.J. Control. Release2006114334334710.1016/j.jconrel.2006.06.017 16876898
    [Google Scholar]
  18. TakahashiH. NiidomeY. NiidomeT. KanekoK. KawasakiH. YamadaS. Modification of gold nanorods using phosphatidylcholine to reduce cytotoxicity.Langmuir20062212510.1021/la0520029 16378388
    [Google Scholar]
  19. ZhangL. WangL. HuY. LiuZ. TianY. WuX. ZhaoY. TangH. ChenC. WangY. Selective metabolic effects of gold nanorods on normal and cancer cells and their application in anticancer drug screening.Biomaterials201334297117712610.1016/j.biomaterials.2013.05.043 23787109
    [Google Scholar]
  20. AliM.R.K. RahmanM.A. WuY. HanT. PengX. MackeyM.A. WangD. ShinH.J. ChenZ.G. XiaoH. WuR. TangY. ShinD.M. El-SayedM.A. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice.Proc. Natl. Acad. Sci. USA201711415E3110E311810.1073/pnas.1619302114 28356516
    [Google Scholar]
  21. ZongQ. DongN. YangX. LingG. ZhangP. Development of gold nanorods for cancer treatment.J. Inorg. Biochem.202122011145810.1016/j.jinorgbio.2021.111458 33857697
    [Google Scholar]
  22. Kus-LiśkiewiczM. FickersP. Ben TaharI. Biocompatibility and cytotoxicity of gold nanoparticles: Recent advances in methodologies and regulations.Int. J. Mol. Sci.202122201095210.3390/ijms222010952 34681612
    [Google Scholar]
  23. ZhaoX. LuD. LiuQ.S. LiY. FengR. HaoF. QuG. ZhouQ. JiangG. Hematological effects of gold nanorods on erythrocytes: Hemolysis and hemoglobin conformational and functional changes.Adv. Sci. (Weinh.)2017412170029610.1002/advs.201700296 29270341
    [Google Scholar]
  24. Zeller MeidellK. RobinsonR. Vieira-de-AbreuA. GormleyA.J. GhandehariH. W GraingerD A Campbell, R. RGDfK-functionalized gold nanorods bind only to activated platelets.J. Biomed. Mater. Res. A2017105120921710.1002/jbm.a.35902 27648522
    [Google Scholar]
  25. JiaY.P. ShiK. LiaoJ.F. PengJ.R. HaoY. QuY. ChenL.J. LiuL. YuanX. QianZ.Y. WeiX.W. Effects of cetyltrimethylammonium bromide on the toxicity of gold nanorods both in vitro and in vivo: Molecular origin of cytotoxicity and inflammation.Small Methods202043190079910.1002/smtd.201900799
    [Google Scholar]
  26. YahC.S. The toxicity of Gold Nanoparticles in relation to their physiochemical properties.Biomed. Res.2013243400413
    [Google Scholar]
  27. CarnovaleC. BryantG. ShuklaR. BansalV. Identifying trends in gold nanoparticle toxicity and uptake: Size, shape, capping ligand, and biological corona.ACS Omega20194124225610.1021/acsomega.8b03227
    [Google Scholar]
  28. LingabathulaH. AngothB. YelluN.R. İn vitro Cytotoxicity of Gold and Silver Nanorods Using, Different Human Cell Lines.Lat. Am. J. Pharm.201534712771282
    [Google Scholar]
  29. LingabathulaH. YelluN. Cytotoxicity, oxidative stress, and inflammation in human Hep G2 liver epithelial cells following exposure to gold nanorods.Toxicol. Mech. Methods201626534034710.3109/15376516.2016.1164268 27098122
    [Google Scholar]
  30. LiZ. TangS. WangB. LiY. HuangH. WangH. LiP. LiC. ChuP.K. YuX.F. Metabolizable small gold nanorods: Size-dependent cytotoxicity, cell uptake and in vivo biodistribution.ACS Biomater. Sci. Eng.20162578979710.1021/acsbiomaterials.5b00538 33440576
    [Google Scholar]
  31. WuH.Y. HuangW.L. HuangM.H. Direct high-yield synthesis of high aspect ratio gold nanorods.Cryst. Growth Des.20077483183510.1021/cg060788i
    [Google Scholar]
  32. WoźniakA. MalankowskaA. NowaczykG. GrześkowiakB.F. TuśnioK. SłomskiR. Zaleska-MedynskaA. JurgaS. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications.J. Mater. Sci. Mater. Med.20172869210.1007/s10856‑017‑5902‑y 28497362
    [Google Scholar]
  33. ObareS.O. JanaN.R. MurphyC.J. Preparation of polystyrene-and silica-coated gold nanorods and their use as templates for the synthesis of hollow nanotubes.Nano Lett.200111160160310.1021/nl0156134
    [Google Scholar]
  34. WuH.Y. ChuH.C. KuoT.J. KuoC.L. HuangM.H. Seed-mediated synthesis of high aspect ratio gold nanorods with nitric acid.Chem. Mater.200517256447645110.1021/cm051455w
    [Google Scholar]
  35. GarabagiuS. BratuI. Thiol containing carboxylic acids remove the CTAB surfactant onto the surface of gold nanorods: An FTIR spectroscopic study.Appl. Surf. Sci.201328478078310.1016/j.apsusc.2013.08.006
    [Google Scholar]
  36. GoleA. MurphyC.J. Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed.Chem. Mater.200416193633364010.1021/cm0492336
    [Google Scholar]
/content/journals/cac/10.2174/0115734110304016240530075916
Loading
/content/journals/cac/10.2174/0115734110304016240530075916
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test