Skip to content
2000
image of Halo-tolerant Plant Growth Promoting Rhizobacteria Enhancing Mustard Seed Growth Under Salinity Stress for Sustainable Agriculture

Abstract

Introduction

Salinity is one of the primary environmental factors that significantly impact global crop production. Plant growth promoting rhizobacteria (PGPR) inoculation to crops improves the productivity of the crops.

Method

To develop a biofertilizer specifically for saline soil, bacteria were isolated from the rhizosphere of mustard plants along with the plant growth-promoting traits grown in saline soil (EC 6 dS m). Halotolerant 22 bacterial strains were isolated and identified from the rhizospheric soil mustard crop, Purvanchal (Indian state). According to the study, 54.54% of the isolates had phosphate solubilization efficiencies ranging from 7% to 27% on plate assays. According to quantitative measurements, 63.63% of the strains exhibited the ability to solubilize phosphate, with degrees of solubilization varying between 0.49 and 3.34 µg/ml. Furthermore, 50% of the isolates showed the ability to solubilize zinc, with solubilization rates varying from 12% to 53%. Further 59.09% of the bacterial strains showed ammonium production test; these strains were classified as having low (+), medium (++), and high (+++) levels of ammonium production.

Result

According to the research, these halo-tolerant plant growth-promoting rhizobacteria (PGPR) have particular functional properties that may help mustard crops grow more rapidly in salinity-stressed environments. Because these PGPR strains increase nutrient availability and stimulate plant development, they may find use in agriculture, especially in saline settings.

Conclusion

The study emphasizes how crucial it is to use PGPR with particular nutrient mobilization features to promote crop growth under difficult circumstances.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083354790250202145831
2025-02-11
2025-06-25
Loading full text...

Full text loading...

References

  1. Safdar H. Amin A. Shafiq Y. Ali A. Yasin R. Shoukat A. A review: Impact of salinity on plant growth. Nat. Sci. 2019 17 1 34 40 10.7537/marsnsj170119.06
    [Google Scholar]
  2. Singh J. Chander Sharma P. Singh V. Breeding mustard (Brassica juncea) for salt tolerance: problems and prospects. Brassica Breed. Biotechnol. 2021 3 69 85 10.5772/intechopen.94551
    [Google Scholar]
  3. Roy S. Chowdhury N. Chapter 19 - Salt Stress in Plants and Amelioration Strategies: A Critical Review. Abiotic Stress in Plants London, UK IntechOpen 2021 1 93552 10.5772/intechopen.93552
    [Google Scholar]
  4. Kumari B. Mallick M.A. Solanki M.K. Solanki A.C. Hora A. Guo W. Plant growth promoting rhizobacteria (PGPR): modern prospects for sustainable agriculture. Plant Heal. Under Biot. Stre. Microbial. Interact. 2019 2 109 127 10.1007/978‑981‑13‑6040‑4_6
    [Google Scholar]
  5. Teo H.M. A A. A W.A. Bhubalan K. S S.N.M. C i M.S. Ng L.C. Setting a plausible route for saline soil-based crop cultivations by application of beneficial halophyte-associated bacteria: A review. Microorganisms 2022 10 3 657 10.3390/microorganisms10030657 35336232
    [Google Scholar]
  6. Rai P.K. Yadav P. Kumar A. Sharma A. Kumar V. Rai P. Brassica juncea: A crop for food and health. The Brassica juncea Genome. Cham Springer International Publishing 2022 1 13 10.1007/978‑3‑030‑91507‑0_1
    [Google Scholar]
  7. Chand S. Patidar O. P. Chaudhary R. Saroj R. Chandra K. Meena V. K. Vasisth P. Diamondback moth ecology and management: problems, progress, and prospects. Annu. Rev. Entomol. 2021 58 517 541 10.1146/annurev‑ento‑120811‑153605 23020617
    [Google Scholar]
  8. Jan B. Sajad S. Reshi Z. A. Mohiddin F. Chapter 1 - Plant growth promoting rhizobacteria (PGPR): Eco-friendly approach for promoting sustainable agriculture. Plant-Microbe Dynamics 1st Ed. Boca Raton, FL CRC Press 2022 16
    [Google Scholar]
  9. Etesami H. Adl S. M. Plant Growth-Promoting Rhizobacteria (PGPR) and Their Action Mechanisms in Availability of Nutrients to Plants. Phyto-Microbiome in Stress Regulation. Environmental and Microbial Biotechnology. Singapore Springer 2020 147 203 10.1007/978‑981‑15‑2576‑6_9
    [Google Scholar]
  10. Sharpley A.N. Smith S.J. Jones O.R. The transport of bioavailable phosphorus in agricultural runoff. J. Environ. Qual. 1992 21 1 30 35 10.2134/jeq1992.00472425002100010003x
    [Google Scholar]
  11. Wei Y. Zhao Y. Shi M. Cao Z. Lu Q. Yang T. Fan Y. Wei Z. Effect of organic acids production and bacterial community on the possible mechanism of phosphorus solubilization during composting with enriched phosphate-solubilizing bacteria inoculation. Bioresour. Technol. 2018 247 190 199 10.1016/j.biortech.2017.09.092 28950126
    [Google Scholar]
  12. Stefanoni Rubio P.J. Godoy M.S. Della Mónica I.F. Pettinari M.J. Godeas A.M. Scervino J.M. Carbon and nitrogen sources influence tricalcium phosphate solubilization and extracellular phosphatase activity by talaromyces flavus. Curr. Microbiol. 2016 72 1 41 47 10.1007/s00284‑015‑0914‑7 26407892
    [Google Scholar]
  13. Goteti P.K. Emmanuel L.D.A. Desai S. Prospective zinc solubilising bacteria for enhanced nutrient uptake and growth promotion in maize (Zea mays L.). Int. J. Microbiol. 2013 2013 869697 10.1155/2013/869697 24489550
    [Google Scholar]
  14. Shilpha J. Song J. Jeong B.R. Ammonium phytotoxicity and tolerance: An insight into ammonium nutrition to improve crop productivity. Agronomy (Basel) 2023 13 6 1487 10.3390/agronomy13061487
    [Google Scholar]
  15. Oleńska E. Małek W. Wójcik M. Swiecicka I. Thijs S. Vangronsveld J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. Sci. Total Environ. 2020 743 140682 10.1016/j.scitotenv.2020.140682 32758827
    [Google Scholar]
  16. Hernández-Canseco J. Bautista-Cruz A. Sánchez-Mendoza S. Aquino-Bolaños T. Sánchez-Medina P.S. Plant growth-promoting halobacteria and their ability to protect crops from abiotic stress: an eco-friendly alternative for saline soils. Agronomy (Basel) 2022 12 4 804 10.3390/agronomy12040804
    [Google Scholar]
  17. Kapadia C. Patel N. Rana A. Vaidya H. Alfarraj S. Ansari M.J. Gafur A. Poczai P. Sayyed R.Z. Evaluation of plant growth-promoting and salinity ameliorating potential of halophilic bacteria isolated from saline soil. Front. Plant Sci. 2022 13 946217 10.3389/fpls.2022.946217 35909789
    [Google Scholar]
  18. Reang L. Bhatt S. Tomar R.S. Joshi K. Padhiyar S. Vyas U.M. Kheni J.K. Plant growth promoting characteristics of halophilic and halotolerant bacteria isolated from coastal regions of Saurashtra Gujarat. Sci. Rep. 2022 12 1 4699 10.1038/s41598‑022‑08151‑x 35304507
    [Google Scholar]
  19. Patra J. K. Das G. Das S. K. Thatoi H. Patra J. K. Das G. Thatoi H. Isolation, Culture, and Biochemical Characterization of Microbes. A Practical Guide to Environmental Biotechnology Singapore Springer 2020 83 133 10.1007/978‑981‑15‑6252‑5_4
    [Google Scholar]
  20. Gupta G. Parihar S.S. Ahirwar N.K. Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J. Microb. Biochem. Technol. 2015 7 2 1000188 10.4172/1948‑5948.1000188
    [Google Scholar]
  21. Fiske C.H. Subbarow Y. The colorimetric determination of phosphorus. J. Biol. Chem. 1925 66 2 375 400 10.1016/S0021‑9258(18)84756‑1
    [Google Scholar]
  22. Saravanakumar D. Vijayakumar C. Kumar N. PGPR-induced defense responses in the tea plant against blister blight disease. Crop Protect. 2007 26 4 556 565 10.1016/j.cropro.2006.05.007
    [Google Scholar]
  23. AL-Abedi S. Khudaier B.Y. AL-Attraqchi A.A. Evalution The Antifungal Activity of Lactobacillus Against Some isolates of Candida spp Isolated From Bovine Mycotic Mastitis. Doctoral dissertation, University of Basrah 2020 1 6
    [Google Scholar]
  24. Khanam S. Islam M.S. Haque M.S. Sarmin T. Topu M.A.M. Improving yield of salt tolerant rice varieties through silicon application. Banglad. J. Nucl. Agric. 2020 33 1 10
    [Google Scholar]
  25. Jain D. Bisht S. Parvez A. Singh K. Bhaskar P. Koubouris G. Effective biotic elicitors for augmentation of secondary metabolite production in medicinal plants. Agriculture 2024 14 6 796 10.3390/agriculture14060796
    [Google Scholar]
  26. Tripathi A. Pandey V.K. Jain D. Singh G. Brar N.S. Taufeeq A. Pandey I. Dash K.K. Samrot A.V. Rustagi S. Implications for sustainable agriculture: Recent insights on PGPR-induced plant signalling and stress management. J. Agric. Food Res. 2024 1 101169 10.1016/j.jafr.2024.101169
    [Google Scholar]
  27. Mitra D. Snežana A. Snežana A. Panneerselvam P. Manisha A. Senapati A. Vasić T. Ganeshamurthy A.N. Devvret V. Poonam A. Radha T.K. Divya J. Plant growth promoting microorganisms (PGPMs) helping in sustainable agriculture: Current perspective. Int. J. Agricul. Sci. Veteri. Medi. 2019 7 2 50 74
    [Google Scholar]
  28. Etesami H. Beattie G.A. Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Front. Microbiol. 2018 9 148 10.3389/fmicb.2018.00148 29472908
    [Google Scholar]
  29. Etesami H. Maheshwari D.K. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicol. Environ. Saf. 2018 156 225 246 10.1016/j.ecoenv.2018.03.013 29554608
    [Google Scholar]
  30. Oteino N. Lally R.D. Kiwanuka S. Lloyd A. Ryan D. Germaine K.J. Dowling D.N. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front. Microbiol. 2015 6 745 10.3389/fmicb.2015.00745 26257721
    [Google Scholar]
  31. Sharma A. Kiran R. Corporate social responsibility: driving forces and challenges. Int. J. Busi. Res. Develop. 2013 2 1 18 27 10.24102/ijbrd.v2i1.182
    [Google Scholar]
  32. Verma R.M. Verma R. aurya B.R. Integrated effect of bioorganics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var. capitata). Ind. J. Agric. Sci. 2014 84 8 914 919 10.56093/ijas.v84i8.43042
    [Google Scholar]
  33. Kannahi M. Kowsalya M. Efficiency of plant growth promoting rhizobacteria for the enhancement of Vigna mungo growth. J. Chem. Pharma. Res. 2013 5 5 1 6
    [Google Scholar]
  34. Rashid M. Khalil S. Ayub N. Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms (PSM) under in vitro conditions. Pak. J. Biolog. Sci. 2004 7 2 187 196 10.3923/pjbs.2004.187.196
    [Google Scholar]
  35. Ehteshami S.M. Rangel Z. Aghaalikhani M. The role of mycorrhizal fungi (Glomus intraradices L) on P uptake by wheat on soil types. Proceedings of the Second National Conference on Ecological Agriculture of Iran Gorgan, Iran, 25-26 Oct 2007, pp. 1-6.
    [Google Scholar]
  36. Ogut Mehmet Er Fatih Kandemir Nejdet Phosphate solubilization potentials of soil Acinetobacter strains. Biol. Fertil. Soil. 2010 46 707 715 10.1007/s00374‑010‑0475‑7
    [Google Scholar]
  37. Sharma D.K. Chaudhari S.K. Agronomic research in salt affected soils of India: an overview. Ind. J. Agron. 2012 57 1 175 185
    [Google Scholar]
  38. Hafeez F.Y. Abaid-Ullah M. Hassan M.N. Plant growth-promoting rhizobacteria as zinc mobilizers: a promising approach for cereals biofortification. Bacteria in Agrobiology: Crop Productivity. Berlin, Heidelberg Springer 2013 217 235 10.1007/978‑3‑642‑37241‑4_9
    [Google Scholar]
  39. Balachander M. Saroja M. Venkatalachalam M. Kumar V. Parthasarathy G. Microstructure and optical properties of undoped and Ni-doped ZnS nanocrystallites. Thin Film Technol. 2016 98 42706 42708
    [Google Scholar]
  40. Gontia-Mishra I. Sapre S. Tiwari S. Zinc solubilizing bacteria from the rhizosphere of rice as prospective modulator of zinc biofortification in rice. Rhizosphere 2017 3 185 190 10.1016/j.rhisph.2017.04.013
    [Google Scholar]
  41. Mishra S. Mishra D.R. Lee Z. Tucker C.S. Quantifying cyanobacterial phycocyanin concentration in turbid productive waters: A quasi-analytical approach. Remote Sens. Environ. 2013 133 141 151 10.1016/j.rse.2013.02.004
    [Google Scholar]
  42. Sarathambal C. Ilamurugu K. Balachandar D. Chinnadurai C. Gharde Y. Characterization and crop production efficiency of diazotrophic isolates from the rhizosphere of semi-arid tropical grasses of India. Appl. Soil Ecol. 2015 87 1 10 10.1016/j.apsoil.2014.11.004
    [Google Scholar]
  43. Kumawat K.C. Nagpal S. Sharma P. Potential of plant growth-promoting rhizobacteria-plant interactions in mitigating salt stress for sustainable agriculture: A review. Pedosphere 2022 32 2 223 245 10.1016/S1002‑0160(21)60070‑X
    [Google Scholar]
  44. Marques A.P.G.C. Pires C. Moreira H. Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol. Biochem. 2010 42 8 1229 1235 10.1016/j.soilbio.2010.04.014
    [Google Scholar]
  45. LeBauer D.S. Treseder K.K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 2008 89 2 371 379 10.1890/06‑2057.1 18409427
    [Google Scholar]
  46. Courty P.E. Smith S. Koegel D. Inorganic nitrogen uptake and transport in beneficial plant root-microbe interactions. Criti. Revi. Plant Sci. 2015 34 1-3 4 16 10.1080/07352689.2014.897897
    [Google Scholar]
  47. Minaxi N. Nain L. Yadav R.C. Saxena J. Characterization of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi arid deserts. Appl. Soil Ecol. 2012 59 124 135 10.1016/j.apsoil.2011.08.001
    [Google Scholar]
  48. Bitas V. Kim H.S. Bennett J.W. Kang S. Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol. Plant Microbe. Interact. 2013 26 8 835 843 10.1094/MPMI‑10‑12‑0249‑CR 23581824
    [Google Scholar]
  49. Shukla A.K. Behera S.K. Shivay Y.S. Micronutrients and field crop production in India: a review. Ind. J. Agron. 2012 57 3 123 130
    [Google Scholar]
  50. Qin Y. Druzhinina I.S. Pan X. Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol. Adv. 2016 34 7 1245 1259 10.1016/j.biotechadv.2016.08.005 27587331
    [Google Scholar]
  51. Abd_Allah E.F. Alqarawi A.A. Hashem A. Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. J. Plan. Interac. 2018 13 1 37 44 10.1080/17429145.2017.1414321
    [Google Scholar]
  52. Alqarawi A. A Abd Allah E. F. Hashem A. Alleviation of salt-induced adverse impact via mycorrhizal fungi in Ephedra aphylla Forssk. J. Plan. Interac. 2014 9 1 802 810 10.1080/17429145.2014.949886
    [Google Scholar]
  53. Abd Allah E. F. Egamberdieva D. Alqarawi A.A. Arbuscular mycorrhizal fungi enhance basil tolerance to salt stress through improved physiological and nutritional status. Pak. J. Bot. 2016 48 1 37 45
    [Google Scholar]
  54. Saghafi D. Ghorbanpour M. Lajayer B.A. Efficiency of Rhizobium strains as plant growth promoting rhizobacteria on morpho-physiological properties of Brassica napus L. under salinity stress. J. Soil Sci. Plant Nutri. 2018 18 1 253 268 10.4067/S0718‑95162018005000903
    [Google Scholar]
  55. Chen L. Liu Y. Wu G. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol. Plant. 2016 158 1 34 44 10.1111/ppl.12441 26932244
    [Google Scholar]
/content/journals/biot/10.2174/0118722083354790250202145831
Loading
/content/journals/biot/10.2174/0118722083354790250202145831
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Halo-tolerant ; Rhizo-bacteria ; Zn solubilisation ; Phosphate solubilisation ; PGPR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test