Skip to content
2000
Volume 19 Number 3
  • ISSN: 1872-2083
  • E-ISSN: 2212-4012

Abstract

Background

In nature, orchid plants are obligate myco-heterotrophs, and rely on mycorrhizal nutrient resources to grow and sustain in the wild, until they become physiologically active photosynthetic plants. Their seeds lack nutrient reserves and receive the necessary carbon from symbiotic fungi during germination. A mycorrhizal fungus provides nutrients, especially sugars, as well as water to the corresponding host plant. The range and distribution of orchid mycorrhizal fungi influence the survivability of orchid populations in their natural habitats. Mycorrhizae form symbiotic connections with the parenchymatous tissues of the roots of orchid plants. That the symbiotic orchid mycorrhiza can invade through roots of orchid seedling, raised , has been patented.

Objective

The objective of this study was to examine the presence of mycorrhiza in the roots of during the vegetative phase.

Methods

Fresh roots were hand-sectioned, and thin sections were observed under the microscope to locate the presence of mycorrhiza. Simultaneously, to observe the expansion of mycorrhiza in the cortical region.

Results

During the vegetative phase of plant growth, a peloton-like structure forms within the cortical region of the orchid roots. Mycorrhizae was observed to be distributed throughout the cortical layer of the root.

Conclusion

This communication reviews the role of mycorrhiza in orchid plants.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083312186240822051057
2024-08-27
2025-07-12
Loading full text...

Full text loading...

References

  1. WhiteK.J. SharmaB. Wild orchids in Nepal: The guide to the Himalayan orchids of the Tribhuvan Rajpath and Chitwan Jungle.Bangkok, ThailandWhite Lotus Press2000307
    [Google Scholar]
  2. JoshiG. TewariL.M. LohaniN. UpretiK. JalalJ.S. TewariG. Diversity of orchids on Uttarakhand and their conservation strategy with special reference to their medicinal importance.Rep. Opinion200914752
    [Google Scholar]
  3. SaranjeetK. Conservation of orchids- A review.Open Access J. J. Med. Aromat. Plants2018925262
    [Google Scholar]
  4. HewC.S. ArdittiJ. LinW.S. Orchid cut-flower production in ASEAN countries.Orchid Biology: Reviews and Perspectives X.Berlin, HeidelbergSpringerLink1997
    [Google Scholar]
  5. KaurS. Mycorrhiza in orchids.Reference Series in Phytochemistry: Orchids Phytochemistry, Biology and Horticulture. MérillonJ-M. KodjaP.H. Cham, SwitzerlandSpringer202020121410.1007/978‑3‑030‑11257‑8_7‑1
    [Google Scholar]
  6. KasuloV. MwabumbaL. MunthaliC. A review of edible orchids in Malawi.J. Hortic. For.20181133139
    [Google Scholar]
  7. KhasimS. RaoP.R.M. Medicinal importance of orchids.Botanica1999498691
    [Google Scholar]
  8. KnudsonL. Physiological study of the symbiotic germination of orchid seeds.Bot. Gaz.192579434537910.1086/333488
    [Google Scholar]
  9. BurgeffH. Die Samenkeimung der Orchideen.JenaGustaf Fischer1936
    [Google Scholar]
  10. BernardN. Recherches experimentale sur les orchidees.Revue Gen Bot190416405
    [Google Scholar]
  11. BernardN. L'évolution dans la symbiose: Les orchidées et leurs champignons commensaux.ParisMasson1909
    [Google Scholar]
  12. ArdittiJ. GhaniA.K.A. Tansley Review No. 110.New Phytol.2000145336742110.1046/j.1469‑8137.2000.00587.x33862900
    [Google Scholar]
  13. SmithS.E. Mycorrhizal symbiosis.3rd ed.LondonAcademic Press2008
    [Google Scholar]
  14. LeakeJ.R. The biology of myco‐heterotrophic (‘saprophytic’) plants.New Phytol.1994127217121610.1111/j.1469‑8137.1994.tb04272.x33874520
    [Google Scholar]
  15. SmithS. Physiology and biology of orchid mycorrhizal fungi with reference to seedling nutrition.New Phytol.196665448849910.1111/j.1469‑8137.1966.tb05972.x
    [Google Scholar]
  16. SmithS. Carbohydrate translocation in orchid mycorrhiza.New Phytol.196766337137810.1111/j.1469‑8137.1967.tb06016.x
    [Google Scholar]
  17. PurvesS. HadleyG. The physiology of symbiosis in Goodyera repens. New Phytol.197677368969610.1111/j.1469‑8137.1976.tb04662.x
    [Google Scholar]
  18. HadleyG. PurvesS. Movement of carbon from host to fungus in orchid mycorrhiza.New Phytol.197473347548210.1111/j.1469‑8137.1974.tb02126.x
    [Google Scholar]
  19. HarrisonC.R. ArdittiJ. Physiological changes during the germination of Cattleya aurantiaca (Orchidaceae).Bot. Gaz.1978139218018910.1086/336985
    [Google Scholar]
  20. LanthierM. Mycorrhizal Fungi: Impact of Commercial Products in Nursery Propagation. Combined Proceedings of International Plant Propagators’.Society200656496508
    [Google Scholar]
  21. AggarwalA. KadianN. TanwarA. YadavA. GuptaK.K. Role of arbuscular mycorrhizal fungi (AMF) in global sustainable development.J. Appl. Nat. Sci.20113234035110.31018/jans.v3i2.211
    [Google Scholar]
  22. WatkinsonsS.C. Mutualistic Symbiosis Between Fungi and Autotrophs.The Fungi.3rd edOxford, UKAcademic press201620524310.1016/B978‑0‑12‑382034‑1.00007‑4
    [Google Scholar]
  23. LiuH. LuoY. LiuH. Studies of mycorrhizal fungi of Chinese orchids and their role in orchid conservation in China – a review.Bot. Rev.201076224126210.1007/s12229‑010‑9045‑9
    [Google Scholar]
  24. RasmussenH.N. RasmussenF.N. Trophic relationships in orchid mycorrhiza – diversity and implications for conservation.Lankesteriana20077334341
    [Google Scholar]
  25. RasmussenH.N. RasmussenF.N. Orchid mycorrhiza: Implications of a mycophagous life style.Oikos2009118333434510.1111/j.1600‑0706.2008.17116.x
    [Google Scholar]
  26. RasmussenH.N. Recent developments in the study of orchid mycorrhiza.Plant Soil20022441/214916310.1023/A:1020246715436
    [Google Scholar]
  27. SenthilkumarS. BrittoS.J. KrishnamurthyK.V. HariharanC. Biochemical analysis of mycorrhizal roots of Aerides maculosum. Phytomorp200050273302
    [Google Scholar]
  28. TaylorD.L. BrunsT.D. HodgesS.A. HodgesS.A. Evidence for mycorrhizal races in a cheating orchid.Proc. Biol. Sci.20042711534354310.1098/rspb.2003.2557
    [Google Scholar]
  29. McCormickM.K. WhighamD.F. SloanD. O’MalleyK. HodkinsonB. Orchid-fungus fidelity: A marriage meant to last?Ecology200687490391110.1890/0012‑9658(2006)87[903:OFAMMT]2.0.CO;216676534
    [Google Scholar]
  30. PereiraG. RomeroC. SuzL.M. AtalaC. Essential mycorrhizal partners of the endemic Chilean orchids Chloraea collicensis and C. gavilu. Flora (Jena)20142092959910.1016/j.flora.2013.12.001
    [Google Scholar]
  31. BalestriniR. KottkeI. Structure and development of ectomycorrhizal roots.Mycorrhizal Symbiosis.3rd ed MartinF. New JerseyJohn Wiley & Sons, Inc2016476210.1002/9781118951446.ch4
    [Google Scholar]
  32. PetersonR.L. CurrahR.S. Synthesis of mycorrhizae between protocorms of Goodyera repens (Orchidaceae) and Ceratobasidium cereale.Can. J. Bot.19906851117112510.1139/b90‑141
    [Google Scholar]
  33. SathiyadashK. MuthukumarT. UmaE. PandeyR.R. Mycorrhizal association and morphology in orchids.J. Plant Interact.20127323824710.1080/17429145.2012.699105
    [Google Scholar]
  34. PecoraroL. GirlandaM. KullT. PeriniC. PerottoS. Molecular identification of root fungal associates in Orchis pauciflora Tenore.Plant Biosyst.2012146498599110.1080/11263504.2011.634447
    [Google Scholar]
  35. HadleyG. JohnsonR.P.C. JohnD.A. Fine structure of the host-fungus interface in orchid mycorrhiza.Planta1971100319119910.1007/BF0038703524488192
    [Google Scholar]
  36. SmithS.E. ReadD.J. Mycorrhizal Symbiosis.2nd edSan DiegoAcademic Press1997605
    [Google Scholar]
  37. UetakeY. FarquharM.L. PetersonR.L. Changes in microtubule arrays in symbiotic orchid protocorms during fungal colonization and senescence.New Phytol.1997135470170910.1046/j.1469‑8137.1997.00686.x
    [Google Scholar]
  38. AlvarezM. Cytophotometric study of nuclear proteins and nucleic acids in parenchymatous tissue of the orchid embryo.Exp. Cell Res.1969572-317918410.1016/0014‑4827(69)90139‑65347624
    [Google Scholar]
  39. AlvarezM.R. Quantitative changes in nuclear DNA accompanying post-germination embryonic development in Vanda (Orchidaceae).Am. J. Bot.19685591036104110.1002/j.1537‑2197.1968.tb07466.x
    [Google Scholar]
  40. SelosseM.A. MinasiewiczJ. BoullardB. An annotated translation of Noël Bernard’s 1899 article ‘On the germination of Neottia nidus-avis’.Mycorrhiza201727661161810.1007/s00572‑017‑0774‑z28421312
    [Google Scholar]
  41. RasmussenH.N. WhighamD.F. Phenology of roots and mycorrhiza in orchid species differing in phototrophic strategy.New Phytol.2002154379780710.1046/j.1469‑8137.2002.00422.x33873451
    [Google Scholar]
  42. PerottoS. RoddaM. BenettiA. SilloF. ErcoleE. RoddaM. GirlandaM. MuratC. BalestriniR. Gene expression in mycorrhizal orchid protocorms suggests a friendly plant–fungus relationship.Planta201423961337134910.1007/s00425‑014‑2062‑x24760407
    [Google Scholar]
  43. ValadaresR.B.S. PerottoS. SantosE.C. LambaisM.R. Proteome changes in Oncidium sphacelatum (Orchidaceae) at different trophic stages of symbiotic germination.Mycorrhiza201424534936010.1007/s00572‑013‑0547‑224310930
    [Google Scholar]
  44. YagameT. OriharaT. SelosseM.A. YamatoM. IwaseK. Mixotrophy of Platanthera minor, an orchid associated with ectomycorrhiza‐forming Ceratobasidiaceae fungi.New Phytol.2012193117818710.1111/j.1469‑8137.2011.03896.x21995447
    [Google Scholar]
  45. ZimmerK. MeyerC. GebauerG. The ectomycorrhizal specialist orchid Corallorhiza trifida is a partial myco‐heterotroph.New Phytol.2008178239540010.1111/j.1469‑8137.2007.02362.x18221248
    [Google Scholar]
  46. McCormickM.K. WhighamD.F. O’NeillJ. Mycorrhizal diversity in photosynthetic terrestrial orchids.New Phytol.2004163242543810.1111/j.1469‑8137.2004.01114.x33873625
    [Google Scholar]
  47. SheffersonR.P. WEIßM.I.C.H.A.E.L. KullT. TaylorD.L. High specificity generally characterizes mycorrhizal association in rare lady’s slipper orchids, genus Cypripedium.Mol. Ecol.200514261362610.1111/j.1365‑294X.2005.02424.x15660950
    [Google Scholar]
  48. AlghamdiS.A. Influence of mycorrhizal fungi on seed germination and growth in terrestrial and epiphytic orchids.Saudi J. Biol. Sci.201926349550210.1016/j.sjbs.2017.10.02130899164
    [Google Scholar]
  49. FochiV. FallaN. GirlandaM. PerottoS. BalestriniR. Cell-specific expression of plant nutrient transporter genes in orchid mycorrhizae.Plant Sci.2017263394510.1016/j.plantsci.2017.06.01528818382
    [Google Scholar]
  50. ZimmerK. HynsonN.A. GebauerG. AllenE.B. AllenM.F. ReadD.J. Wide geographical and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotropoids (Ericaceae) and in orchids.New Phytol.2007175116617510.1111/j.1469‑8137.2007.02065.x17547676
    [Google Scholar]
  51. KugaY. SakamotoN. YurimotoH. Stable isotope cellular imaging reveals that both live and degenerating fungal pelotons transfer carbon and nitrogen to orchid protocorms.New Phytol.2014202259460510.1111/nph.1270024494717
    [Google Scholar]
  52. DearnaleyJ.D.W. MartosF. SelosseM.A. Orchid mycorrhizas: Molecular ecology, phys-iology, evolution and conservation aspects.The MycotaBerlinSpringer2012
    [Google Scholar]
  53. SmithS.E. Gianinazzi-PearsonV. KoideR. CairneyJ.W.G. Nutrient transport in mycorrhizas: Structure, physiology and consequences for efficiency of the symbiosis.Plant Soil1994159110311310.1007/BF00000099
    [Google Scholar]
  54. BalestriniR. NervaL. SilloF. GirlandaM. PerottoS. Plant and fungal gene expression in mycorrhizal protocorms of the orchid Serapias vomeracea colonized by Tulasnella calospora.Plant Signal. Behav.2014911e97770710.4161/15592324.2014.97770725482758
    [Google Scholar]
  55. ArdittiJ. Factors affecting the germination of orchid seeds.Bot. Rev.196733119710.1007/BF02858656
    [Google Scholar]
  56. KauthP.J. DutraD. JohnsonT.R. StewartS.L. KaneM.E. VendrameW. Techniques and applications of in vitro orchid seed germination.Floriculture, Ornamental and Plant Biotechnology.UKGlobal Science Books2008375391
    [Google Scholar]
  57. YamazakiJ. MiyoshiK. In vitro asymbiotic germination of immature seed and formation of protocorm by Cephalanthera falcata (Orchidaceae).Ann. Bot. (Lond.)20069861197120610.1093/aob/mcl22317071633
    [Google Scholar]
  58. YehCM ChungK LiangCK TsaiW-C New insights into the symbiotic relationship between orchids and fungi.Appl. Sci.20199358510.3390/app9030585
    [Google Scholar]
  59. van der HeijdenM.G.A. MartinF.M. SelosseM.A. SandersI.R. Mycorrhizal ecology and evolution: The past, the present, and the future.New Phytol.201520541406142310.1111/nph.1328825639293
    [Google Scholar]
  60. BückingH. KafleA. Role of Arbuscular mycorrhizal fungi in the nitrogen uptake of plants: Current knowledge and research gaps.Agronomy (Basel)20155458761210.3390/agronomy5040587
    [Google Scholar]
  61. HadleyG. Cellulose as a carbon source for orchid mycorrhiza.New Phytol.196968493393910.1111/j.1469‑8137.1969.tb06492.x
    [Google Scholar]
  62. WithnerC.L. Orchid Physiology.The Orchids. A Scientific Survey. WithnerC.L. New YorkRonald Press Co.1959315360
    [Google Scholar]
  63. HadleyG. HarvaisG. The effect of certain growth substances on asymbiotic germination and development of Orchis purpurella. New Phytol.196867244144510.1111/j.1469‑8137.1968.tb06393.x
    [Google Scholar]
  64. HarleyJ.L. Mycorrhiza.The Fungi. An Advanced Treatise. AinsworthG.C. SussmanA.S. New YorkAcademic Press19683139178
    [Google Scholar]
  65. FochiV. ChitarraW. KohlerA. VoyronS. SinganV.R. LindquistE.A. BarryK.W. GirlandaM. Fungal and plant gene expression in the - symbiosis provides clues about nitrogen pathways in orchid mycorrhizas.New Phytol.2017213136537910.1111/nph.1427927859287
    [Google Scholar]
  66. ImhofS. Subterranean structures and mycotrophy of the achlorophyllous Triuris hyalina (Triuridaceae).Can. J. Bot.199876120112019
    [Google Scholar]
  67. ImhofS. Anatomy and mycotrophy of the achlorophyllous Afrothismia winkleri.New Phytol.1999144353354010.1046/j.1469‑8137.1999.00532.x33862866
    [Google Scholar]
  68. Available from: https://sciencing.com/symbiotic-relationship-of-the-orchid-and-tree-12328242.html
  69. HongJ.W. SuhH. KimO.H. LeeN.S. Molecular Identification of Mycorrhizae of Cymbidium kanran (Orchidaceae) on Jeju Island, Korea.Mycobiology201543447548010.5941/MYCO.2015.43.4.47526839508
    [Google Scholar]
  70. ZhangX.Q. LundA.A. SarathG. CernyR.L. RobertsD.M. CholletR. Soybean nodule sucrose synthase (nodulin-100): Further analysis of its phosphorylation using recombinant and authentic root-nodule enzymes.Arch. Biochem. Biophys.19993711708210.1006/abbi.1999.141510525291
    [Google Scholar]
  71. RayP. CravenK.D. Sebacina vermifera: A unique root symbiont with vast agronomic potential.World J. Microbiol. Biotechnol.20163211610.1007/s11274‑015‑1970‑726715121
    [Google Scholar]
  72. ShahS. ShresthaR. MaharjanS. SelosseM.A. PantB. Isolation and characterization of plant growth-promoting endophytic fungi from the roots of Dendrobium moniliforme. Plants201881510.3390/plants801000530597827
    [Google Scholar]
  73. ChutimaR. DellB. VessabutrS. BussabanB. LumyongS. Endophytic fungi from Pecteilis susannae (L.) Rafin (Orchidaceae), a threatened terrestrial orchid in Thailand.Mycorrhiza201121322122910.1007/s00572‑010‑0327‑120617346
    [Google Scholar]
  74. BhuiyanM.S. HossainM.M. HossainK.S. IslamM.N. Isolation and identification of mycorrhizal fungus from an epiphytic orchid (Rhynchostylis retusa L. Bl.).Bangladesh J. Bot.2021501859110.3329/bjb.v50i1.52675
    [Google Scholar]
  75. FreitasEFS da SilvaM SilvaCE MangaraviteE BocayuvaMF VelosoTGR SelosseMA KasuyaMCM Diversity of mycorrhizal Tulasnella associated with epiphytic and rupicolous orchids from the Brazilian Atlantic Forest, including four new species.Sci Rep20201017069
    [Google Scholar]
  76. CurrahR.S. ZelmerC.D. HambletonS. RichardsonK.A. Fungi from orchid mycorrhizas.Orchid Biology: Reviews and Perspectives, VII. ArdittiJ. PridgeonA. DordrechtKluwer Academic Publishers199711717010.1007/978‑94‑017‑2498‑2_4
    [Google Scholar]
  77. RocheS.A. CarterR.J. PeakallR. SmithL.M. WhiteheadM.R. LindeC.C. A narrow group of monophyletic Tulasnella (Tulasnellaceae) symbiont lineages are associated with multiple species of Chiloglottis (Orchidaceae): Implications for orchid diversity.Am. J. Bot.20109781313132710.3732/ajb.100004921616884
    [Google Scholar]
  78. MaX. Non-mycorrhizal endophytic fungi from orchids.Curr. Sci.201510917277
    [Google Scholar]
  79. SharonM. SnehB. KuninagaS. HyakumachiM. NaitoS. Classification of Rhizoctonia spp. using rDNA-ITS sequence analysis supports the genetic basis of the classical anastomosis grouping.Mycoscience20084929311410.1007/S10267‑007‑0394‑0
    [Google Scholar]
  80. ThakurJ. DwivediM.D. UniyalP.L. Ultrastructural studies and molecular characterization of root-associated fungi, of Crepidium acuminatum (D.Don) Szlach.: A threatened and medicinally important taxon.J. Genet.20189751139114610.1007/s12041‑018‑1007‑830555063
    [Google Scholar]
  81. ZhuG.S. YuZ.N. GuiY. LiuZ.Y. A novel technique for isolating orchid mycorrhizal fungi.Fungal Divers.200833123137
    [Google Scholar]
  82. ShanX.C. LiewE.C.Y. WeatherheadM.A. HodgkissI.J. Characterization and taxonomic placement of Rhizoctonia -like endophytes from orchid roots.Mycologia200294223023910.1080/15572536.2003.1183322821156492
    [Google Scholar]
  83. OteroJ.T. AckermanJ.D. BaymanP. Differences in mycorrhizal preferences between two tropical orchids.Mol. Ecol.20041382393240410.1111/j.1365‑294X.2004.02223.x15245412
    [Google Scholar]
  84. JacquemynH. BrysR. CammueB.P.A. HonnayO. LievensB. Mycorrhizal associations and reproductive isolation in three closely related Orchis species.Ann. Bot. (Lond.)2011107334735610.1093/aob/mcq24821186239
    [Google Scholar]
  85. HuangC.L. JianF.Y. HuangH.J. ChangW.C. WuW.L. HwangC.C. LeeR-H. ChiangT-Y. Deciphering mycorrhizal fungi in cultivated Phalaenopsis microbiome with next-generation sequencing of multiple barcodes.Fungal Divers.2014661778810.1007/s13225‑014‑0281‑x
    [Google Scholar]
  86. RasmussenH.N. Terrestrial orchids from seed to mycotrophic plant.CambridgeCambridge University Press199544410.1017/CBO9780511525452
    [Google Scholar]
  87. Orchid germchit propagating method.CN101926259B2010https://patents.google.com/patent/CN101926259B/en
    [Google Scholar]
/content/journals/biot/10.2174/0118722083312186240822051057
Loading
/content/journals/biot/10.2174/0118722083312186240822051057
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): carbohydrates; endomycorrhiza; myco-heterotroph; Mycorrhiza; orchids; symbiosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test