Skip to content
2000
Volume 19 Number 3
  • ISSN: 1872-2083
  • E-ISSN: 2212-4012

Abstract

Since ancient times, plants have been used as a remedy for numerous diseases. The pharmacological properties of plants are due to the presence of secondary metabolites like terpenoids, flavonoids, alkaloids, . Anthraquinones represent a group of naturally occurring quinones found generously across various plant species. Anthraquinones attract a significant amount of attention due to their reported efficacy in treating a wide range of diseases. Their complex chemical structures, combined with inherent medicinal properties, underscore their potential as agents for therapy. They demonstrate several therapeutic properties such as laxative, antitumor, antimalarial, antibacterial, antifungal, antioxidant, . Anthraquinones are found in different forms (derivatives) in plants, and they exhibit various medicinal properties due to their structure and chemical nature. The precursors for the biosynthesis of anthraquinones in higher plants are provided by different pathways such as plastidic hemiterpenoid 2-C-methyl-D-erthriol4-phosphate (MEP), mevalonate (MVA), isochorismate synthase and polyketide. Anthraquinones possess several medicinal properties and a complex biosynthetic pathway, making them good candidates for patenting new products, synthesis methods, and biotechnological production advancements. By conducting a thorough analysis of scientific literature, this review provides insights into the intricate interplay between anthraquinone biosynthesis and its broad-ranging contributions to human health.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083301761240628083511
2024-07-04
2025-06-22
Loading full text...

Full text loading...

References

  1. WolfenderJ.L. MartiG. ThomasA. BertrandS. Current approaches and challenges for the metabolite profiling of complex natural extracts.J. Chromatogr. A2015138213616410.1016/j.chroma.2014.10.091 25464997
    [Google Scholar]
  2. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  3. Prateeksha. Chrysophanol: A natural anthraquinone with multifaceted biotherapeutic potential.Biomolecules20199268
    [Google Scholar]
  4. NtemafackA. SinghR.V. AliS. KuiateJ.R. HassanQ.P. Antiviral potential of anthraquinones from polygonaceae, rubiaceae and asphodelaceae: Potent candidates in the treatment of SARS-COVID-19, A comprehensive review.S. Afr. J. Bot.202215114615510.1016/j.sajb.2022.09.043 36193345
    [Google Scholar]
  5. DuloB. PhanK. GithaigaJ. RaesK. De MeesterS. Natural quinone dyes: A review on structure, extraction techniques, analysis and application potential.Waste Biomass Valoriz.202112126339637410.1007/s12649‑021‑01443‑9
    [Google Scholar]
  6. TalaM.F. TalontsiF.M. WaboH.K. LantovololonaJ.E.R. TaneP. LaatschH. Anthraquinones and triterpenoids from seeds of Vismia guineensis.Biochem. Syst. Ecol.20135031031210.1016/j.bse.2013.04.014
    [Google Scholar]
  7. DuvalJ. PecherV. PoujolM. LesellierE. Research advances for the extraction, analysis and uses of anthraquinones: A review.Ind. Crops Prod.20169481283310.1016/j.indcrop.2016.09.056
    [Google Scholar]
  8. WangN. SuM. LiangS. SunH. Investigation of six bioactive anthraquinones in slimming tea by accelerated solvent extraction and high performance capillary electrophoresis with diode-array detection.Food Chem.20161991710.1016/j.foodchem.2015.11.083 26775937
    [Google Scholar]
  9. GillM. The biosynthesis of pigments in Basidiomycetes.Aust. J. Chem.2001541272173410.1071/CH01206
    [Google Scholar]
  10. HifnawyM.S. FoudaM.M. SayedA.M. The genus Micromonospora as a model microorganism for bioactive natural product discovery.RSC Advances20201035209392095910.1039/D0RA04025H 35517724
    [Google Scholar]
  11. CheemalamarriC. BatchuU.R. ThallamapuramN.P. KatragaddaS.B. Reddy ShettyP. A review on hydroxy anthraquinones from bacteria: Crosstalk’s of structures and biological activities.Nat. Prod. Res.202236236186620510.1080/14786419.2022.2039920 35175877
    [Google Scholar]
  12. MalikE.M. MüllerC.E. Anthraquinones as pharmacological tools and drugs.Med. Res. Rev.201636470574810.1002/med.21391 27111664
    [Google Scholar]
  13. TianW. WangC. LiD. HouH. Novel anthraquinone compounds as anticancer agents and their potential mechanism.Future Med. Chem.202012762764410.4155/fmc‑2019‑0322 32175770
    [Google Scholar]
  14. MalikM.S. AlsantaliR.I. JassasR.S. Journey of anthraquinones as anticancer agents – A systematic review of recent literature.RSC Advances20211157358063582710.1039/D1RA05686G 35492773
    [Google Scholar]
  15. EntensaY. González-MoralesA. LinaresC. Exposure of Calophyllum antillanum seeds to liquid nitrogen delays seedling emergence and decreases leaf anthraquinones.Cryo Lett.2022431586510.54680/fr22110110812 35315871
    [Google Scholar]
  16. BuzunK. BielawskaA. BielawskiK. GornowiczA. DNA topoisomerases as molecular targets for anticancer drugs.J. Enzyme Inhib. Med. Chem.20203511781179910.1080/14756366.2020.1821676 32975138
    [Google Scholar]
  17. Diaz-MuñozG. MirandaI.L. SartoriS.K. de RezendeD.C. DiazM.A.N. Anthraquinones: An overview.Stud Nat Prod Chem20185831333810.1016/B978‑0‑444‑64056‑7.00011‑8
    [Google Scholar]
  18. Rama ReddyN.R. MehtaR.H. SoniP.H. Next generation sequencing and transcriptome analysis predicts biosynthetic pathway of sennosides from Senna (Cassia angustifolia Vahl.), a non-model plant with potent laxative properties.PLoS One2015106e012942210.1371/journal.pone.0129422 26098898
    [Google Scholar]
  19. PandithS.A. DharN. RanaS. BhatW.W. KushwahaM. GuptaA.P. Functional promiscuity of two divergent paralogs of type III plant polyketide synthases.Plant Physiol.20161712599261910.1104/pp.16.00003
    [Google Scholar]
  20. MurthyH.N. JosephK.S. PaekK.Y. ParkS.Y. Anthraquinone production from cell and organ cultures of Rubia species: An overview.Metabolites20221313910.3390/metabo13010039 36676964
    [Google Scholar]
  21. ThakerK. PatoliyaJ. RabadiyaK. An in-silico approach to unravel the structure of 3-deoxy-D-arabino-heptulosonate 7- phosphate synthase (DAHPS): A critical enzyme for sennoside biosynthesis in Cassia angustifolia Vahl.J. Biomol. Struct. Dyn.202442838483861 37243697
    [Google Scholar]
  22. BadialiC. PetruccelliV. BrasiliE. PasquaG. Xanthones: Biosynthesis and trafficking in plants, fungi and lichens.Plants202312469410.3390/plants12040694 36840041
    [Google Scholar]
  23. SitthithawornW. WungsintaweekulJ. SirisuntipongT. CharoonratanaT. EbizukaY. Cloning and expression of 1-deoxy-d-xylulose 5-phosphate synthase cDNA from Croton stellatopilosus and expression of 2C-methyl-d-erythritol 4-phosphate synthase and geranyl diphosphate synthase, key enzymes of plaunotol biosynthesis.J. Plant Physiol.2010167429230010.1016/j.jplph.2009.09.001 19782428
    [Google Scholar]
  24. XuY. LiuJ. LiangL. Molecular cloning and characterization of three cDNAs encoding 1-deoxy-d-xylulose-5-phosphate synthase in Aquilaria sinensis (Lour.) Gilg.Plant Physiol. Biochem.20148213314110.1016/j.plaphy.2014.05.013 24950429
    [Google Scholar]
  25. TongY. SuP. ZhaoY. Molecular cloning and characterization of DXS and DXR genes in the terpenoid biosynthetic pathway of Tripterygium wilfordii.Int. J. Mol. Sci.20151610255162553510.3390/ijms161025516 26512659
    [Google Scholar]
  26. ZhangH.C. LiC.X. WangY.Z. ZhangX.D. Cloning and expression analysis of gene encoding 1-deoxy-d-xylulose 5-phosphate synthase in Gentiana rigescens.Biotechnol Bull2016324128
    [Google Scholar]
  27. HenriquezM.A. SolimanA. LiG. HannoufaA. AyeleB.T. DaayfF. Molecular cloning, functional characterization and expression of potato (Solanum tuberosum) 1-deoxy- d -xylulose 5-phosphate synthase 1 (StDXS1) in response to Phytophthora infestans.Plant Sci.2016243718310.1016/j.plantsci.2015.12.001 26795152
    [Google Scholar]
  28. XuC. WeiH. MovahediA. Evaluation, characterization, expression profiling, and functional analysis of DXS and DXR genes of Populus trichocarpa.Plant Physiol. Biochem.20191429410510.1016/j.plaphy.2019.05.034 31279136
    [Google Scholar]
  29. SrinathM. ShailajaA. BinduB.B.V. GiriC.C. Molecular cloning and differential gene expression analysis of 1-deoxy-D-xylulose 5-phosphate synthase (DXS) in Andrographis paniculata (Burm. f) Nees.Mol. Biotechnol.202163210912410.1007/s12033‑020‑00287‑3 33222042
    [Google Scholar]
  30. TianL. ShiJ. YangL. WeiA. Molecular cloning and functional analysis of DXS and FPS genes from Zanthoxylum bungeanum Maxim.Foods20221112174610.3390/foods11121746 35741944
    [Google Scholar]
  31. XuR. WuJ. ZhangY. Isolation, characterisation, and expression profiling of DXS and DXR genes in Atractylodes lancea.Genome202366615016410.1139/gen‑2022‑0084 37001150
    [Google Scholar]
  32. SandoT. TakenoS. WatanabeN. Cloning and characterization of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway genes of a natural-rubber producing plant, Hevea brasiliensis.Biosci. Biotechnol. Biochem.200872112903291710.1271/bbb.80387 18997428
    [Google Scholar]
  33. ChenX. ZhangY. YanH. Cloning and functional analysis of 1-deoxy-d-xylulose-5-phosphate synthase (DXS) in Santalum album L.Gene202385114676210.1016/j.gene.2022.146762 35933050
    [Google Scholar]
  34. GuptaP. AgarwalA.V. AkhtarN. SangwanR.S. SinghS.P. TrivediP.K. Cloning and characterization of 2-C-methyl-d-erythritol-4-phosphate pathway genes for isoprenoid biosynthesis from Indian ginseng, Withania somnifera.Protoplasma2013250128529510.1007/s00709‑012‑0410‑x 22526204
    [Google Scholar]
  35. GuirimandG. GuihurA. PerelloC. Cellular and subcellular compartmentation of the 2 C-methyl-D-erythritol 4-phosphate pathway in the Madagascar periwinkle.Plants20209446210.3390/plants9040462 32272573
    [Google Scholar]
  36. YaoH. GongY. ZuoK. Molecular cloning, expression profiling and functional analysis of a DXR gene encoding 1-deoxy-d-xylulose 5-phosphate reductoisomerase from Camptotheca acuminata.J. Plant Physiol.2008165220321310.1016/j.jplph.2006.12.001 17257708
    [Google Scholar]
  37. ZhangY. YanH. LiY. Molecular cloning and functional analysis of 1-deoxy-D- xylulose 5-phosphate reductoisomerase from Santalum album.Genes202112562610.3390/genes12050626 33922119
    [Google Scholar]
  38. LvH. ZhangX. LiaoB. Cloning and analysis of 1-hydroxy-2-methyl-2-(E)-butenyl-4-diphosphate reductase genes HsHDR1 and HsHDR2 in Huperzia serrate.Acta Pharm. Sin. B20155658358910.1016/j.apsb.2015.09.002 26713274
    [Google Scholar]
  39. KrauseT. WiesingerP. González-CabanelasD. HDR, the last enzyme in the MEP pathway, differently regulates isoprenoid biosynthesis in two woody plants.Plant Physiol.2023192276778810.1093/plphys/kiad110 36848194
    [Google Scholar]
  40. VishwakarmaR.K. RubyS. SinghS. Molecular cloning, biochemical characterization and differential expression of an acetyl-CoA C- acetyltransferase gene (AACT) of Brahmi (Bacopa monniera).Plant Mol. Biol. Report.201331354755710.1007/s11105‑012‑0523‑6
    [Google Scholar]
  41. WangM. ZhengZ. TianZ. Molecular cloning and analysis of an acetyl-CoA C-acetyltransferase Gene (EkAACT) from Euphorbia kansui Liou.Plants20221112153910.3390/plants11121539 35736690
    [Google Scholar]
  42. NoushahiH.A. KhanA.H. NoushahiU.F. Biosynthetic pathways of triterpenoids and strategies to improve their biosynthetic efficiency.Plant Growth Regul.202297343945410.1007/s10725‑022‑00818‑9 35382096
    [Google Scholar]
  43. YadavS. SharmaA. NayikG.A. Review of shikonin and derivatives: Isolation, chemistry, biosynthesis, pharmacology and toxicology.Front. Pharmacol.20221390575510.3389/fphar.2022.905755 35847041
    [Google Scholar]
  44. ZhaoY. LiuY. ChenY. GaoM. WuL. WangY. Overexpression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase enhances the monoterpene content in Litsea cubeba.For. Res.20233110.48130/FR‑2023‑0011
    [Google Scholar]
  45. QianY. LynchJ.H. GuoL. RhodesD. MorganJ.A. DudarevaN. Completion of the cytosolic post-chorismate phenylalanine biosynthetic pathway in plants.Nat. Commun.20191011510.1038/s41467‑018‑07969‑2 30604768
    [Google Scholar]
  46. LeeJ. Investigating the functional evolution of shikimate kinase-like 1 in Marchantia polymorpha.Doctoral dissertation2020
    [Google Scholar]
  47. ArunK.B. SindhuR. AlexD. Bacterial bioactive metabolites as therapeutic agents: From production to action.Sustain. Chem. Pharm.20222710065010.1016/j.scp.2022.100650
    [Google Scholar]
  48. KangS.H. LeeW.H. SimJ.S. De novo transcriptome assembly of Senna occidentalis sheds light on the anthraquinone biosynthesis pathway.Front Plant Sci20221277355310.3389/fpls.2021.773553 35046973
    [Google Scholar]
  49. ZhangK. QinY. SunW. Phylogenomic analysis of cytochrome p450 gene superfamily and their association with flavonoids biosynthesis in peanut (Arachis hypogaea L.).Genes20231410194410.3390/genes14101944 37895293
    [Google Scholar]
  50. HuangQ. LuG. ShenH.M. ChungM.C.M. OngC.N. Anti‐cancer properties of anthraquinones from rhubarb.Med. Res. Rev.200727560963010.1002/med.20094 17022020
    [Google Scholar]
  51. WatrolyM.N. SekarM. FuloriaS. Chemistry, biosynthesis, physicochemical and biological properties of rubiadin: A promising natural anthraquinone for new drug discovery and development.Drug Des. Devel. Ther.2021154527454910.2147/DDDT.S338548 34764636
    [Google Scholar]
  52. ChienS.C. WuY.C. ChenZ.W. YangW.C. Naturally occurring anthraquinones: Chemistry and therapeutic potential in autoimmune diabetes.Evid. Based Complement. Alternat. Med.2015201511310.1155/2015/357357 25866536
    [Google Scholar]
  53. SahooP.M.S. BeheraS. BehuraR. AcharyaA. BiswalD. SunaS.K. A brief review: Antibacterial activity of quinone derivatives.Biointerface Res. Appl. Chem.20221232473258
    [Google Scholar]
  54. RahimN.A. FerdoshS. SarkerM.Z.I. Extraction methodologies, phytochemical constituents, and biological activities of Senna alata linn: A review.J. Nat. Prod.2023132218
    [Google Scholar]
  55. DaveH. LedwaniL. A review on anthraquinones isolated from Cassia species and their applications.Indian J. Nat. Prod. Resour.20123291319
    [Google Scholar]
  56. ZhangR. HuangC. WuF. Review on melanosis coli and anthraquinone-containing traditional Chinese herbs that cause melanosis coli.Front. Pharmacol.202314116048010.3389/fphar.2023.1160480 37214441
    [Google Scholar]
  57. KhurmM. WangX. ZhangH. The genus Cassia L.: Ethnopharmacological and phytochemical overview.Phytother. Res.20213552336238510.1002/ptr.6954 33617115
    [Google Scholar]
  58. DubeyA. GuptaS. KhatoonM. GuptaA.K. Saussurea costus (Kust) and Senna alexandrina (Senna).In: In Herbs, Shrubs, and Trees of Potential Medicinal Benefits.CRC Press2022261290
    [Google Scholar]
  59. KumarR. SinghA.K. GuptaA. BishayeeA. PandeyA.K. Therapeutic potential of Aloe vera—A miracle gift of nature.Phytomedicine20196015299610.1016/j.phymed.2019.152996 31272819
    [Google Scholar]
  60. HaydenM.S. GhoshS. NF-κB in immunobiology.Cell Res.201121222324410.1038/cr.2011.13 21243012
    [Google Scholar]
  61. JangraA. SharmaG. SihagS. ChhokarV. The dark side of miracle plant-Aloe vera: A review.Mol. Biol. Rep.20224965029504010.1007/s11033‑022‑07176‑9 35092563
    [Google Scholar]
  62. AsifM. ZahidT. AhmadB. YasmeenT. ImranM. Therapeutics characteristics and application of Aloe vera: A review.RADS Food Biosci2023215664
    [Google Scholar]
  63. XiangH. ZuoJ. GuoF. DongD. What we already know about rhubarb: A comprehensive review.Chin. Med.20201518810.1186/s13020‑020‑00370‑6 32863857
    [Google Scholar]
  64. YadavJ.P. AryaV. YadavS. PanghalM. KumarS. DhankharS. Cassia occidentalis L.: A review on its ethnobotany, phytochemical and pharmacological profile.Fitoterapia201081422323010.1016/j.fitote.2009.09.008 19796670
    [Google Scholar]
  65. ChanE.W.C. WongC.W. WongS.K. HuiY.W. TanJ.B.L. Emodin and shikonin (quinones): An overview of their chemistry, plant sources, pharmacology and cytotoxic activities against lung cancer.J. Chin. Pharm. Sci.202029111210.5246/jcps.2020.01.001
    [Google Scholar]
  66. ZhangF.Y. LiR.Z. XuC. Emodin induces apoptosis and suppresses non-small-cell lung cancer growth via downregulation of sPLA2-IIa.Phytomedicine20229515378610.1016/j.phymed.2021.153786 34785104
    [Google Scholar]
  67. ShiehD.E. ChenY.Y. YenM.H. ChiangL.C. LinC.C. Emodin-induced apoptosis through p53-dependent pathway in human hepatoma cells.Life Sci.200474182279229010.1016/j.lfs.2003.09.060 14987952
    [Google Scholar]
  68. SemwalR.B. SemwalD.K. CombrinckS. ViljoenA. Emodin - A natural anthraquinone derivative with diverse pharmacological activities.Phytochemistry202119011285410.1016/j.phytochem.2021.112854 34311280
    [Google Scholar]
  69. SandersB. RayA.M. GoldbergS. Anti-cancer effects of aloe-emodin: A systematic review.J. Clin. Transl. Res.201733283296 30895270
    [Google Scholar]
  70. SachdevaV. RoyA. BharadvajaN. Current prospects of nutraceuticals: A review.Curr. Pharm. Biotechnol.2020211088489610.2174/1389201021666200130113441 32000642
    [Google Scholar]
  71. StringaroA. SerraS. GoriA. Peptide-mediated targeted delivery of aloe-emodin as anticancer drug.Molecules20222714461510.3390/molecules27144615 35889487
    [Google Scholar]
  72. ChenH.C. HsiehW.T. ChangW.C. ChungJ.G. Aloe-emodin induced in vitro G2/M arrest of cell cycle in human promyelocytic leukemia HL-60 cells.Food Chem. Toxicol.20044281251125710.1016/j.fct.2004.03.002 15207375
    [Google Scholar]
  73. ShenF. GeC. YuanP. Aloe-emodin induces autophagy and apoptotic cell death in non-small cell lung cancer cells via Akt/mTOR and MAPK signaling.Eur. J. Pharmacol.202088617355010.1016/j.ejphar.2020.173550 32926915
    [Google Scholar]
  74. PengM. ZhengZ. ChenS. Sensitization of non-small cell lung cancer cells to gefitinib and reversal of epithelial–mesenchymal transition by aloe-emodin via PI3K/Akt/TWIS1 signal blockage.Front. Oncol.20221290803110.3389/fonc.2022.908031 35677158
    [Google Scholar]
  75. HeJ. WangL. GuoH. ZhaoH. SunJ. Chemistry, pharmacology and processing method of rhubarb (Rheum species): A review.J. Food Bioact.20198810.31665/JFB.2019.8205
    [Google Scholar]
  76. DeitersenJ. El-KashefD.H. ProkschP. StorkB. Anthraquinones and autophagy – Three rings to rule them all?Bioorg. Med. Chem.2019272011504210.1016/j.bmc.2019.115042 31420258
    [Google Scholar]
  77. Sharifi-RadJ. Herrera-BravoJ. KamilogluS. Recent advances in the therapeutic potential of emodin for human health.Biomed. Pharmacother.202215411355510.1016/j.biopha.2022.113555 36027610
    [Google Scholar]
  78. ShenZ. ZhuB. LiJ. QinL. Rhein augments antiproliferative effects of atezolizumab based on breast cancer (4T1) regression.Planta Med.20198514/151143114910.1055/a‑1012‑7034 31559608
    [Google Scholar]
  79. DuraipandiyanV. BaskarA.A. IgnacimuthuS. MuthukumarC. Al-HarbiN.A. Anticancer activity of Rhein isolated from Cassia fistula L. flower.Asian Pac. J. Trop. Dis.20122S517S52310.1016/S2222‑1808(12)60213‑8
    [Google Scholar]
  80. HuB. ZhangH. MengX. WangF. WangP. Aloe-emodin from rhubarb (Rheum rhabarbarum) inhibits lipopolysaccharide-induced inflammatory responses in RAW264.7 macrophages.J. Ethnopharmacol.2014153384685310.1016/j.jep.2014.03.059 24685589
    [Google Scholar]
  81. ZhuT. ZhangW. FengS. YuH. Emodin suppresses LPS-induced inflammation in RAW264.7 cells through a PPARγ-dependent pathway.Int. Immunopharmacol.201634162410.1016/j.intimp.2016.02.014 26910236
    [Google Scholar]
  82. RathinamV.A.K. FitzgeraldK.A. Inflammasome complexes: Emerging mechanisms and effector functions.Cell2016165479280010.1016/j.cell.2016.03.046 27153493
    [Google Scholar]
  83. GeH. TangH. LiangY. Rhein attenuates inflammation through inhibition of NF-κB and NALP3 inflammasome in vivo and in vitro.Drug Des. Devel. Ther.2017111663167110.2147/DDDT.S133069 28652704
    [Google Scholar]
  84. AlebachewY. BisratD. TadesseS. AsresK. In vivo anti-malarial activity of the hydroalcoholic extract of rhizomes of Kniphofia foliosa and its constituents.Malar. J.2021201310.1186/s12936‑020‑03552‑7 33386079
    [Google Scholar]
  85. ShinuP. MouslemA.K.A. NairA.B. Progress report: Antimicrobial drug discovery in the resistance era.Pharmaceuticals202215441310.3390/ph15040413 35455410
    [Google Scholar]
  86. ManojlovicN.T. SolujicS. SukdolakS. KrsticL.J. Anthraquinones from the lichen Xanthoria parietina.J. Serb. Chem. Soc.1998631711
    [Google Scholar]
  87. QunT. ZhouT. HaoJ. WangC. ZhangK. XuJ. Antibacterial activities of anthraquinones: Structure–activity relationships and action mechanisms.RSC Med Chem20231481446147110.1039/D3MD00116D
    [Google Scholar]
  88. AgarwalS.K. SinghS.S. VermaS. KumarS. Antifungal activity of anthraquinone derivatives from Rheum emodi.J. Ethnopharmacol.2000721-2434610.1016/S0378‑8741(00)00195‑1 10967452
    [Google Scholar]
  89. BerilloD. KozhahmetovaM. LebedevaL. Overview of the biological activity of anthraquinons and flavanoids of the plant rumex species.Molecules2022274120410.3390/molecules27041204 35208994
    [Google Scholar]
  90. KimY.M. LeeC.H. KimH.G. LeeH.S. Anthraquinones isolated from Cassia tora (Leguminosae) seed show an antifungal property against phytopathogenic fungi.J. Agric. Food Chem.200452206096610010.1021/jf049379p 15453672
    [Google Scholar]
  91. KumarS. KorraT. ThakurR. ArutselvanR. KashyapA.S. NehelaY. Role of plant secondary metabolites in defence and transcriptional regulation in response to biotic stress.Plant Stress2023100154
    [Google Scholar]
  92. WuY.W. OuyangJ. XiaoX.H. GaoW.Y. LiuY. Antimicrobial properties and toxicity of anthraquinones by microcalorimetric bioassay.Chin. J. Chem.2006241455010.1002/cjoc.200690020
    [Google Scholar]
  93. LuC. WangH. LvW. Antibacterial properties of anthraquinones extracted from rhubarb against Aeromonas hydrophila.Fish. Sci.201177337538410.1007/s12562‑011‑0341‑z
    [Google Scholar]
  94. YenG. DuhP.D. ChuangD.Y. Antioxidant activity of anthraquinones and anthrone.Food Chem.200070443744110.1016/S0308‑8146(00)00108‑4
    [Google Scholar]
  95. CharltonN.C. MastyuginM. TörökB. TörökM. Structural features of small molecule antioxidants and strategic modifications to improve potential bioactivity.Molecules2023283105710.3390/molecules28031057 36770724
    [Google Scholar]
  96. DongX. ZengY. LiuY. Aloe‐emodin: A review of its pharmacology, toxicity, and pharmacokinetics.Phytother. Res.202034227028110.1002/ptr.6532 31680350
    [Google Scholar]
  97. MishraS.K. TiwariS. ShrivastavaA. Antidyslipidemic effect and antioxidant activity of anthraquinone derivatives from Rheum emodi rhizomes in dyslipidemic rats.J. Nat. Med.201468236337110.1007/s11418‑013‑0810‑z 24343839
    [Google Scholar]
  98. SuS. WuJ. GaoY. LuoY. YangD. WangP. The pharmacological properties of chrysophanol, the recent advances.Biomed. Pharmacother.202012511000210.1016/j.biopha.2020.110002 32066044
    [Google Scholar]
  99. XunLi LiuY ChuS Physcion and physcion 8-O-β-glucopyranoside: A review of their pharmacology, toxicities and pharmacokinetics.Chem. Biol. Interact.201931010872210.1016/j.cbi.2019.06.035 31226286
    [Google Scholar]
  100. WangA. JiangH. LiuY. Rhein induces liver cancer cells apoptosis via activating ROS-dependent JNK/Jun/caspase-3 signaling pathway.J. Cancer202011250050710.7150/jca.30381 31897245
    [Google Scholar]
  101. SunH. LuoG. ChenD. XiangZ. A comprehensive and system review for the pharmacological mechanism of action of rhein, an active anthraquinone ingredient.Front. Pharmacol.2016724710.3389/fphar.2016.00247 27582705
    [Google Scholar]
  102. DongX. FuJ. YinX. Emodin: A review of its pharmacology, toxicity and pharmacokinetics.Phytother. Res.20163081207121810.1002/ptr.5631 27188216
    [Google Scholar]
  103. OsmanCP IsmailNH Antiplasmodial anthraquinones from medicinal plants: the chemistry and possible mode of actions.Nat Prod Commun201813121934578X180130120710.1177/1934578X1801301207
    [Google Scholar]
  104. XuZ. HouY. ZouC. Alizarin, a nature compound, inhibits the growth of pancreatic cancer cells by abrogating NF-κB activation.Int. J. Biol. Sci.20221872759277410.7150/ijbs.70567 35541911
    [Google Scholar]
  105. JeonJ.H. SongH.Y. KimM.G. LeeH.S. Anticoagulant properties of alizarin and its derivatives derived from the seed extract of Cassia obtusifolia.J. Korean Soc. Appl. Biol. Chem.200952216316710.3839/jksabc.2009.030
    [Google Scholar]
  106. YangY. ShangW. ZhouL. JiangB. JinH. ChenM. Emodin with PPARγ ligand-binding activity promotes adipocyte differentiation and increases glucose uptake in 3T3-Ll cells.Biochem. Biophys. Res. Commun.2007353222523010.1016/j.bbrc.2006.11.134 17174269
    [Google Scholar]
  107. LiuY. JiaL. LiuZ.C. Emodin ameliorates high-glucose induced mesangial p38 over-activation and hypocontractility via activation of PPARγ.Exp. Mol. Med.200941964865510.3858/emm.2009.41.9.071 19478555
    [Google Scholar]
  108. ChenZ. ZhangL. YiJ. YangZ. ZhangZ. LiZ. Promotion of adiponectin multimerization by emodin: A novel AMPK activator with PPARγ‐agonist activity.J. Cell. Biochem.2012113113547355810.1002/jcb.24232 22730200
    [Google Scholar]
  109. HardieD.G. AMP-activated protein kinase—an energy sensor that regulates all aspects of cell function.Genes Dev.201125181895190810.1101/gad.17420111 21937710
    [Google Scholar]
  110. SongP. KimJ.H. GhimJ. Emodin regulates glucose utilization by activating AMP-activated protein kinase.J. Biol. Chem.201328885732574210.1074/jbc.M112.441477 23303186
    [Google Scholar]
  111. MartorellM CastroN VictorianoM CapóX TejadaS VitaliniS An update of anthraquinone derivatives emodin, diacerein, and catenarin in diabetes.J Evid Based Complementary Altern Med20212021
    [Google Scholar]
  112. ZhangX. ZhangR. LvP. Emodin up‐regulates glucose metabolism, decreases lipolysis, and attenuates inflammation in vitro Rhein upregulates glucose metabolism, reduces lipolysis and inhibits inflammatory response in vivo.J. Diabetes20157336036810.1111/1753‑0407.12190 24981886
    [Google Scholar]
  113. CaoY. ChangS. DongJ. Emodin ameliorates high-fat-diet induced insulin resistance in rats by reducing lipid accumulation in skeletal muscle.Eur. J. Pharmacol.201678019420110.1016/j.ejphar.2016.03.049 27020550
    [Google Scholar]
  114. JayatilakeG.S. JayasuriyaH. LeeE.S. Kinase inhibitors from Polygonum cuspidatum.J. Nat. Prod.199356101805181010.1021/np50100a021 8277318
    [Google Scholar]
  115. ZhangL. LauY.K. XiL. Tyrosine kinase inhibitors, emodin and its derivative repress HER-2/neu-induced cellular transformation and metastasis-associated properties.Oncogene199816222855286310.1038/sj.onc.1201813 9671406
    [Google Scholar]
  116. ArvindekarA. MoreT. PayghanP.V. LaddhaK. GhoshalN. ArvindekarA. Evaluation of anti-diabetic and alpha glucosidase inhibitory action of anthraquinones from Rheum emodi.Food Funct.2015682693270010.1039/C5FO00519A 26145710
    [Google Scholar]
  117. Müller-LissnerS.A. Adverse effects of laxatives: Fact and fiction.Pharmacology199347113814510.1159/000139853 8234421
    [Google Scholar]
  118. da SilvaE.N.Jr CavalcantiB.C. GuimarãesT.T. Synthesis and evaluation of quinonoid compounds against tumor cell lines.Eur. J. Med. Chem.201146139941010.1016/j.ejmech.2010.11.006 21115213
    [Google Scholar]
  119. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans.World health organization international agency for research on cancerLyon, France2013971510
    [Google Scholar]
  120. MalinoskiD.J. SlaterM.S. MullinsR.J. Crush injury and rhabdomyolysis.Crit. Care Clin.200420117119210.1016/S0749‑0704(03)00091‑5 14979336
    [Google Scholar]
  121. SinghD. ChanderV. ChopraK. Rhabdomyolysis.Methods Find. Exp. Clin. Pharmacol.2005271394810.1358/mf.2005.27.1.875435 15834458
    [Google Scholar]
  122. SuH. MarroneP. OsborneJ.L. Compositions containing anthraquinone derivatives as growth promoters and antifungal agents.U.S. Patent20148,658,567
    [Google Scholar]
/content/journals/biot/10.2174/0118722083301761240628083511
Loading
/content/journals/biot/10.2174/0118722083301761240628083511
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test