Skip to content
2000
Volume 19, Issue 2
  • ISSN: 1872-2083
  • E-ISSN: 2212-4012

Abstract

Nanoparticles bestow beneficial impacts on plants, specifically in increasing photosynthetic capacity and germination rate, pesticide delivery, managing pathogenicity and enhancing nutrient supply. The nanoparticles produced from the medicinal plant extracts are identified as an exceptional applicant in nanomedicine, cosmetics, and agriculture for the treatment of diseases as antimicrobial, antioxidant and anticancer agents, . Plant extracts actually have bioactive metabolites that provide therapeutic potential against a variety of diseases. Herein, we review the production of bioactive compounds from leaves, roots, seeds, flowers and stems. We further summarize the different methods for obtaining plant extracts and the green technologies for the synthesis of nanoparticles of plant derived bioactive compounds. Biotechnological aspects of these synthesized nanoparticles are also added here as highlights of this review. Overall, plant derived nanoparticles provide an alternative to conventional approaches for drug delivery as well and present exciting opportunities for future research on novel areas. We explore patent applications for novel plant-derived nanoparticle technologies, highlighting their potential in various fields.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083301253240417114400
2024-04-19
2025-06-01
Loading full text...

Full text loading...

References

  1. MoorthiC. KrishnanK. ManavalanR. KathiresanK. Preparation and characterization of curcumin–piperine dual drug loaded nanoparticles.Asian Pac. J. Trop. Biomed.201221184184810.1016/S2221‑1691(12)60241‑X23569859
    [Google Scholar]
  2. HenríquezC.L. AguilarA.K. ÁlvarezU.J. FernándezV.L. de Oca-VásquezM.G. BaudritV.J.R. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area.Nanomaterials2020109176310.3390/nano1009176332906575
    [Google Scholar]
  3. VanlalveniC. LallianrawnaS. BiswasA. SelvarajM. ChangmaiB. RokhumS.L. Green synthesis of silver nanoparticles using plant extracts and their antimicrobial activities: A review of recent literature.RSC Advances20211152804283710.1039/D0RA09941D35424248
    [Google Scholar]
  4. BanerjeeP. SatapathyM. MukhopahayayA. DasP. Leaf extract mediated green synthesis of silver nanoparticles from widely available Indian plants: Synthesis, characterization, antimicrobial property and toxicity analysis.Bioresour. Bioprocess.201411310.1186/s40643‑014‑0003‑y
    [Google Scholar]
  5. KhatamiM. PourseyediS. KhatamiM. HamidiH. ZaeifiM. SoltaniL. Synthesis of silver nanoparticles using seed exudates of Sinapis arvensis as a novel bioresource, and evaluation of their antifungal activity.Bioresour. Bioprocess.2015211910.1186/s40643‑015‑0043‑y
    [Google Scholar]
  6. BanoN. SiddiquiS. AmirM. Bioprospecting of the novel isolate Microbacterium proteolyticum LA2(R) from the rhizosphere of Rauwolfia serpentina.Saudi J. Biol. Sci.20222931858186810.1016/j.sjbs.2021.10.03835280579
    [Google Scholar]
  7. AlmagroL. PedreñoM.Á. Use of cyclodextrins to improve the production of plant bioactive compounds.Phytochem. Rev.20201941061108010.1007/s11101‑020‑09704‑6
    [Google Scholar]
  8. CruzR.M. BritoR. SmirniotisP. NikolaidouZ. VieiraM.C. Extraction of bioactive compounds from olive leaves using emerging technologies. In: Ingredients extraction by physicochemical methods in food.Academic Press201744146110.1016/B978‑0‑12‑811521‑3.00011‑9
    [Google Scholar]
  9. LinaresB.I. StojanovićZ. PinéQ.R. Rosmarinus officinalis leaves as a natural source of bioactive compounds.Int. J. Mol. Sci.20141511205852060610.3390/ijms15112058525391044
    [Google Scholar]
  10. ChávezJ.G.G. VillaJ.A. ZavalaF.A.J. Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: An overview.Compr. Rev. Food Sci. Food Saf.201312152310.1111/1541‑4337.12005
    [Google Scholar]
  11. SeephonkaiP. PyneS.G. WillisA.C. LieW. Bioactive compounds from the roots of Strophioblachia fimbricalyx.J. Nat. Prod.20137671358136410.1021/np400268d23806014
    [Google Scholar]
  12. LuluT. ParkS.Y. IbrahimR. PaekK.Y. Production of biomass and bioactive compounds from adventitious roots by optimization of culturing conditions of Eurycoma longifolia in balloon-type bubble bioreactor system.J. Biosci. Bioeng.2015119671271710.1016/j.jbiosc.2014.11.01025511788
    [Google Scholar]
  13. FidelisM. de MouraC. KabbasJunior T. Fruit seeds as sources of bioactive compounds: Sustainable production of high value-added ingredients from by-products within circular economy.Molecules20192421385410.3390/molecules2421385431731548
    [Google Scholar]
  14. DemasiS. CaserM. DonnoD. EnriS.R. LonatiM. ScariotV. Exploring wild edible flowers as a source of bioactive compounds: New perspectives in horticulture.Folia Hortic.2021331274810.2478/fhort‑2021‑0004
    [Google Scholar]
  15. RachkeereeA. KantadoungK. SuksathanR. PuangpradabR. PageP.A. SommanoS.R. Nutritional compositions and phytochemical properties of the edible flowers from selected Zingiberaceae found in Thailand.Front. Nutr.20185310.3389/fnut.2018.0000329450200
    [Google Scholar]
  16. MoonS.H. PanduranganM. KimD.H. VenkateshJ. PatelR.V. MistryB.M. A rich source of potential bioactive compounds with anticancer activities by Catharanthus roseus cambium meristematic stem cell cultures.J. Ethnopharmacol.201821710711710.1016/j.jep.2018.02.02129452141
    [Google Scholar]
  17. JhaA.K. SitN. Extraction of bioactive compounds from plant materials using combination of various novel methods: A review.Trends Food Sci. Technol.202211957959110.1016/j.tifs.2021.11.019
    [Google Scholar]
  18. JuradoR.F. VegaF.A. CoronaR.N. PalouE. MaloL.A. Essential oils: Antimicrobial activities, extraction methods, and their modeling.Food Eng. Rev.20157327529710.1007/s12393‑014‑9099‑2
    [Google Scholar]
  19. ButnariuM. Methods of analysis (extraction, separation, identification and quantification) of carotenoids from natural products.J. Ecosyst. Ecography2016621910.4172/2157‑7625.1000193
    [Google Scholar]
  20. AzwanidaN.N. A review on the extraction methods use in medicinal plants, principle, strength and limitation.Med. Aromat. Plants2015419621670412
    [Google Scholar]
  21. RasulM.G. Extraction, isolation and characterization of natural products from medicinal plants.Int J Basic Sci Appl Comput201826F0076122618
    [Google Scholar]
  22. HidayatR. WulandariP. WulandariP. Methods of extraction: Maceration, percolation and decoction.Eureka Herba Indonesia202121737910.37275/ehi.v2i1.15
    [Google Scholar]
  23. EsclapezM.D. García-PérezJ.V. MuletA. CárcelJ.A. Ultrasound-assisted extraction of natural products.Food Eng. Rev.20113210812010.1007/s12393‑011‑9036‑6
    [Google Scholar]
  24. HekmatiM. HasaniradS. KhalediA. EsmaeiliD. Green synthesis of silver nanoparticles using extracts of Allium rotundum l, Falcaria vulgaris Bernh, and Ferulago angulate Boiss, and their antimicrobial effects in vitro.Gene Rep.20201910058910.1016/j.genrep.2020.100589
    [Google Scholar]
  25. KhalajM. KamaliM. CostaM.E.V. CapelaI. Green synthesis of nanomaterials - A scientometric assessment.J. Clean. Prod.202026712203610.1016/j.jclepro.2020.122036
    [Google Scholar]
  26. TrivediR. UpadhyayT.K. MujahidM.H. Recent advancements in plant-derived nanomaterials research for biomedical applications.Processes202210233810.3390/pr10020338
    [Google Scholar]
  27. TolaymatT.M. El BadawyA.M. GenaidyA. ScheckelK.G. LuxtonT.P. SuidanM. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers.Sci. Total Environ.20104085999100610.1016/j.scitotenv.2009.11.00319945151
    [Google Scholar]
  28. DekeboA. Plant Extracts.IntechOpen2019
    [Google Scholar]
  29. ZhangQ.W. LinL.G. YeW.C. Techniques for extraction and isolation of natural products: A comprehensive review.Chin. Med.20181312010.1186/s13020‑018‑0177‑x29692864
    [Google Scholar]
  30. BlondeauD. RoyL. DumontS. GodinG. MartineauI. Physicians’ and pharmacists’ attitudes toward the use of sedation at the end of life: Influence of prognosis and type of suffering.J. Palliat. Care200521423824510.1177/08258597050210040216483092
    [Google Scholar]
  31. SharmaV. AndersonD. DhawanA. Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2).Apoptosis201217885287010.1007/s10495‑012‑0705‑622395444
    [Google Scholar]
  32. HameedS. KhalilA.T. AliM. Greener synthesis of ZnO and Ag–ZnO nanoparticles using Silybum marianum for diverse biomedical applications.Nanomedicine201914665567310.2217/nnm‑2018‑027930714480
    [Google Scholar]
  33. CherianT. AliK. SaquibQ. FaisalM. WahabR. MusarratJ. Cymbopogon citratus functionalized green synthesis of CuO-nanoparticles: Novel prospects as antibacterial and antibiofilm agents.Biomolecules202010216910.3390/biom1002016931979040
    [Google Scholar]
  34. LetchumananD. SokS.P.M. IbrahimS. NagoorN.H. ArshadN.M. Plant-based biosynthesis of copper/copper oxide nanoparticles: An update on their applications in biomedicine, mechanisms, and toxicity.Biomolecules202111456410.3390/biom1104056433921379
    [Google Scholar]
  35. BhattacharjeeA. AhmaruzzamanM. CuO nanostructures: Facile synthesis and applications for enhanced photodegradation of organic compounds and reduction of p-nitrophenol from aqueous phase.RSC Advances2016647413484136310.1039/C6RA03624D
    [Google Scholar]
  36. WangQ. ZhangY. XiaoJ. JiangH. HuT. MengC. Copper oxide/cuprous oxide/hierarchical porous biomass-derived carbon hybrid composites for high-performance supercapacitor electrode.J. Alloys Compd.20197821103111310.1016/j.jallcom.2018.12.235
    [Google Scholar]
  37. AhmadW. JaiswalK.K. AmjadM. Euphorbia herita leaf extract as a reducing agent in a facile green synthesis of iron oxide nanoparticles and antimicrobial activity evaluation.Inorg Nano-Met Chem202151911471154
    [Google Scholar]
  38. ChauhanS. UpadhyayL.S.B. Biosynthesis of iron oxide nanoparticles using plant derivatives of Lawsonia inermis (Henna) and its surface modification for biomedical application.Nanotechnol Environ Eng201941810.1007/s41204‑019‑0055‑5
    [Google Scholar]
  39. NadeemM. TungmunnithumD. HanoC. The current trends in the green syntheses of titanium oxide nanoparticles and their applications.Green Chem. Lett. Rev.201811449250210.1080/17518253.2018.1538430
    [Google Scholar]
  40. HanoC. AbbasiB.H. Plant-based green synthesis of nanoparticles: Production, characterization and applications.Biomolecules20211213110.3390/biom1201003135053179
    [Google Scholar]
  41. JeyarajM. GurunathanS. QasimM. KangM.H. KimJ.H. A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles.Nanomaterials2019912171910.3390/nano912171931810256
    [Google Scholar]
  42. KimJ. TakahashiM. ShimizuT. Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans.Mech. Ageing Dev.2008129632233110.1016/j.mad.2008.02.01118400258
    [Google Scholar]
  43. BakerA. SyedA. AlyousefA.A. Sericin-functionalized GNPs potentiate the synergistic effect of levofloxacin and balofloxacin against MDR bacteria.Microb. Pathog.202014810446710.1016/j.micpath.2020.10446732877723
    [Google Scholar]
  44. BhatM.P. KumarR.S. AlmansourA.I. Characterization, antimicrobial activity and anticancer activity of Pyrostegia venusta leaf extract-synthesized silver nanoparticles against COS-7 cell line.Appl. Nanosci.20231332303231410.1007/s13204‑021‑02120‑y
    [Google Scholar]
  45. PrasadK.S. PrasadS.K. AnsariM.A. Tumoricidal and bactericidal properties of ZnONPs synthesized using Cassia auriculata leaf extract.Biomolecules202010798210.3390/biom1007098232630019
    [Google Scholar]
  46. PerveenK. HusainF.M. QaisF.A. Microwave-assisted rapid green synthesis of gold nanoparticles using seed extract of Trachyspermum ammi: ROS mediated biofilm inhibition and anticancer activity.Biomolecules202111219710.3390/biom1102019733573343
    [Google Scholar]
  47. SaleemK. KhursheedZ. HanoC. AnjumI. AnjumS. Applications of nanomaterials in leishmaniasis: A focus on recent advances and challenges.Nanomaterials2019912174910.3390/nano912174931818029
    [Google Scholar]
  48. VianaS.R.L. FidelisP.G. Campos MedeirosJ.M. Green synthesis of antileishmanial and antifungal silver nanoparticles using corn cob xylan as a reducing and stabilizing agent.Biomolecules2020109123510.3390/biom1009123532854282
    [Google Scholar]
  49. HamedA.A. KabaryH. KhedrM. EmamA.N. Antibiofilm, antimicrobial and cytotoxic activity of extracellular green-synthesized silver nanoparticles by two marine-derived actinomycete.RSC Advances20201017103611036710.1039/C9RA11021F35498609
    [Google Scholar]
  50. SinghR. HanoC. NathG. SharmaB. Green biosynthesis of silver nanoparticles using leaf extract of Carissa carandas L. and their antioxidant and antimicrobial activity against human pathogenic bacteria.Biomolecules202111229910.3390/biom1102029933671333
    [Google Scholar]
  51. JiangD. PanY. YaoH. Synthesis of renal-clearable multicolor fluorescent silicon nanodots for tumor imaging and in vivo H2O2 profiling.Anal. Chem.202294259074908010.1021/acs.analchem.2c0130835694855
    [Google Scholar]
  52. WangT. JiangK. WangY. Prolonged near-infrared fluorescence imaging of microRNAs and proteases in vivo by aggregation-enhanced emission from DNA-AuNC nanomachines.Chem. Sci.20241551829183910.1039/D3SC05887E38303939
    [Google Scholar]
  53. ZhaoX. MaQ. TaoK. HanL. ZIF-derived porous CoNi2S4 on intercross linked polypyrrole tubes for high-performance asymmetric supercapacitors.ACS Appl. Energy Mater.2021444199420710.1021/acsaem.1c00516
    [Google Scholar]
  54. KhanS.A. ShahidS. ShahidB. FatimaU. AbbasiS.A. Green synthesis of MnO nanoparticles using abutilon indicum leaf extract for biological, photocatalytic, and adsorption activities.Biomolecules202010578510.3390/biom1005078532438654
    [Google Scholar]
  55. SharmaS. MudgalD. GuptaV. Advancement in biological and mechanical behavior of 3D printed poly lactic acid bone plates using polydopamine coating: Innovation for healthcare.J. Mech. Behav. Biomed. Mater.202314310592910.1016/j.jmbbm.2023.10592937263171
    [Google Scholar]
  56. FliegerJ. FranusW. PanekR. Green synthesis of silver nanoparticles using natural extracts with proven antioxidant activity.Molecules20212616498610.3390/molecules2616498634443574
    [Google Scholar]
  57. WangJ. MaX. ZhouJ. DuF. TengC. Bioinspired, high-strength, and flexible MXene/aramid fiber for electromagnetic interference shielding papers with joule heating performance.ACS Nano20221646700671110.1021/acsnano.2c0132335333052
    [Google Scholar]
  58. HossainA. AbdallahY. AliM.A. Lemon-fruit-based green synthesis of zinc oxide nanoparticles and titanium dioxide nanoparticles against soft rot bacterial pathogen Dickeya dadantii.Biomolecules201991286310.3390/biom912086331835898
    [Google Scholar]
  59. WahidI. KumariS. AhmadR. Silver nanoparticle regulates salt tolerance in wheat through changes in ABA concentration, ion homeostasis, and defense systems.Biomolecules20201011150610.3390/biom1011150633147820
    [Google Scholar]
  60. AlshehriA.A. MalikM.A. Phytomediated photo-induced green synthesis of silver nanoparticles using Matricaria chamomilla L. and its catalytic activity against rhodamine B.Biomolecules20201012160410.3390/biom1012160433256218
    [Google Scholar]
  61. MallikarjunaK. NasifO. Ali AlharbiS. Phytogenic synthesis of Pd-Ag/rGO nanostructures using stevia leaf extract for photocatalytic H2 production and antibacterial studies.Biomolecules202111219010.3390/biom1102019033572968
    [Google Scholar]
  62. SasidharanS. PottailL. Antimicrobial activity of metal and non-metallic nanoparticles from Cyperus rotundus root extract on infectious disease causing pathogens.J. Plant Biochem. Biotechnol.202029113414310.1007/s13562‑019‑00523‑1
    [Google Scholar]
  63. YasminA. RameshK. RajeshkumarS. Optimization and stabilization of gold nanoparticles by using herbal plant extract with microwave heating.Nano Converg.2014111210.1186/s40580‑014‑0012‑828191395
    [Google Scholar]
  64. ComanC. LeopoldL.F. RuginăO.D. Green synthesis of gold nanoparticles by Allium sativum extract and their assessment as SERS substrate.J. Nanopart. Res.2014161215810.1007/s11051‑013‑2158‑4
    [Google Scholar]
  65. MohammadinejadR. KarimiS. IravaniS. VarmaR.S. Plant-derived nanostructures: Types and applications.Green Chem.2016181205210.1039/C5GC01403D
    [Google Scholar]
  66. TailorG. YadavB.L. ChaudharyJ. JoshiM. SuvalkaC. Green synthesis of silver nanoparticles using Ocimum canum and their anti-bacterial activity.Biochem. Biophys. Rep.20202410084810.1016/j.bbrep.2020.10084833305022
    [Google Scholar]
  67. DuttaT. GhoshN.N. DasM. AdhikaryR. MandalV. ChattopadhyayA.P. Green synthesis of antibacterial and antifungal silver nanoparticles using Citrus limetta peel extract: Experimental and theoretical studies.J. Environ. Chem. Eng.20208410401910.1016/j.jece.2020.104019
    [Google Scholar]
  68. SoffianM.S. HalimF.Z. AzizF. RahmanM.A. AminM.A. CheeD.N. Carbon-based material derived from biomass waste for wastewater treatment.Environ. Adv.2022910025910.1016/j.envadv.2022.100259
    [Google Scholar]
  69. AlsalhiM.S. DevanesanS. Synthesis of silver nanoparticles from abelmoschus esculentus extract.US Patent 10,059,601 B12018
    [Google Scholar]
  70. QasimM. ClarksonA.N. HinkleyS.F.R. Green synthesis of carbon nanoparticles (CNPs) from biomass for biomedical applications.Int. J. Mol. Sci.2023242102310.3390/ijms2402102336674532
    [Google Scholar]
  71. LiuZ. RobinsonJ.T. TabakmanS.M. YangK. DaiH. Carbon materials for drug delivery & cancer therapy.Mater. Today2011147-831632310.1016/S1369‑7021(11)70161‑4
    [Google Scholar]
/content/journals/biot/10.2174/0118722083301253240417114400
Loading
/content/journals/biot/10.2174/0118722083301253240417114400
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test