Skip to content
2000
Volume 19, Issue 2
  • ISSN: 1872-2083
  • E-ISSN: 2212-4012

Abstract

Antibiotics are considered “wonder drugs” due to the fact that they are the most extensively utilised medication in the world. They are used to cure a broad spectrum of diseases and lethal infections. A variety of bacteria and fungi produce antibiotics as a result of secondary metabolism; however, their production is dominated by a special class of bacteria, namely Actinobacteria. Actinobacteria are gram-positive bacteria with high G+C content and unparalleled antibiotic-producing ability. They produce numerous polyenes, tetracyclines, β-lactams, macrolides, and peptides. Actinobacteria are ubiquitous in nature and are isolated from various sources, such as marine and terrestrial endophytes of plants and air. They are studied for their relative antibiotic-producing ability along with the mechanism that the antibiotics follow to annihilate the pathogenic agents that include bacteria, fungi, protozoans, helminths, . Actinobacteria isolated from endophytes of medicinal plants have amassed significant attention as they interfere with the metabolism of medicinal plants and acquire enormous benefits from it in the form of conspicuous novel antibiotic-producing ability. Actinobacteria is not only an antibiotic but also a rich source of anticancer compounds that are widely used owing to its remarkable tumorigenic potential. Today, amongst Actinobacteria, class Streptomyces subjugates the area of antibiotic production, producing 70% of all known antibiotics. The uniqueness of bioactive Actinobacteria has turned the attention of scientists worldwide in order to explore its potentiality as effective “micronanofactories”. This study provides a brief overview of the production of antibiotics from Actinobacteria inhabiting patent environments and the methods involved in the screening of antibiotics.

Loading

Article metrics loading...

/content/journals/biot/10.2174/0118722083300181240429072502
2024-05-10
2025-05-09
Loading full text...

Full text loading...

References

  1. BhatM.J. Al-qahtaniM. BadawiA.S. Awareness and knowledge of antibiotic resistance and risks of self-medication with antibiotics among the aseer region population, saudi arabia, 2023.Cureus2023156e4076210.7759/cureus.4076237485193
    [Google Scholar]
  2. BudR. Antibiotics: the epitome of a wonder drug.BMJ2007334Suppl. 1s610.1136/bmj.39021.640255.9417204764
    [Google Scholar]
  3. MaitiP.K. DasS. SahooP. MandalS. Streptomyces sp SM01 isolated from Indian soil produces a novel antibiotic picolinamycin effective against multi drug resistant bacterial strains.Sci. Rep.20201011009210.1038/s41598‑020‑66984‑w32572099
    [Google Scholar]
  4. AbdeenS. IsaacR.R. GeoS. SornalekshmiS. RoseA. PraseethaP.K. Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi fusarium oxysporum and actinomycetes sp. on human pathogens.Nano Biomed. Eng.201351394510.5101/nbe.v5i1.p39‑45
    [Google Scholar]
  5. ZhuH. SandifordS.K. van WezelG.P. Triggers and cues that activate antibiotic production by actinomycetes.J. Ind. Microbiol. Biotechnol.201441237138610.1007/s10295‑013‑1309‑z23907251
    [Google Scholar]
  6. SelimM.S.M. AbdelhamidS.A. MohamedS.S. Secondary metabolites and biodiversity of actinomycetes.J. Genet. Eng. Biotechnol.20211917210.1186/s43141‑021‑00156‑933982192
    [Google Scholar]
  7. De SimeisD. SerraS. Actinomycetes: A never-ending source of bioactive compounds—An overview on antibiotics production.Antibiotics202110548310.3390/antibiotics1005048333922100
    [Google Scholar]
  8. NgamcharungchitC. ChaimusikN. PanbangredW. EuanorasetrJ. IntraB. Bioactive metabolites from terrestrial and marine actinomycetes.Molecules20232815591510.3390/molecules2815591537570885
    [Google Scholar]
  9. BanoN. SiddiquiS. AmirM. Roohi. House of industrially important bioactive metabolites: A review on actinobacteria.Indian J. Biotechnol.2019181293304
    [Google Scholar]
  10. JagannathanS.V. ManemannE.M. RoweS.E. CallenderM.C. SotoW. Marine actinomycetes, new sources of biotechnological products.Mar. Drugs202119736510.3390/md1907036534201951
    [Google Scholar]
  11. van der MeijA. WorsleyS.F. HutchingsM.I. van WezelG.P. Chemical ecology of antibiotic production by actinomycetes.FEMS Microbiol. Rev.201741339241610.1093/femsre/fux00528521336
    [Google Scholar]
  12. CuiJ. DuizerC. BouwmanL.I. The ALPK1 pathway drives the inflammatory response to Campylobacter jejuni in human intestinal epithelial cells.PLoS Pathog.2021178e100978710.1371/journal.ppat.100978734339468
    [Google Scholar]
  13. GayathiriE. PrakashP. KarmegamN. VarjaniS. AwasthiM.K. RavindranB. Biosurfactants: potential and eco-friendly material for sustainable agriculture and environmental safety—a review.Agronomy202212366210.3390/agronomy12030662
    [Google Scholar]
  14. LiX. XuH. ChenZ.S. ChenG. Biosynthesis of nanoparticles by microorganisms and their applications.J. Nanomater.20112011811610.1155/2011/270974
    [Google Scholar]
  15. ManimaranM. KannabiranK. Actinomycetes-mediated biogenic synthesis of metal and metal oxide nanoparticles: progress and challenges.Lett. Appl. Microbiol.201764640140810.1111/lam.1273028267874
    [Google Scholar]
  16. KumarN. SinghR.K. SkM. AkS. UcP. Isolation and screening of soil Actinomycetes as source of antibiotics active against bacteria.Int. J. Microbiol. Res.201022121610.9735/0975‑5276.2.2.12‑16
    [Google Scholar]
  17. BaninE. HughesD. KuipersO.P. Editorial: Bacterial pathogens, antibiotics and antibiotic resistance.FEMS Microbiol. Rev.201741345045210.1093/femsre/fux01628486583
    [Google Scholar]
  18. OuchariL BoukeskasseA BouizgarneB OuhdouchY Antimicrobial potential of actinomycetes isolated from the unexplored hot Merzouga desert and their taxonomic diversity.Bio Open201982bio035410.10.1242/bio.03541030127092
    [Google Scholar]
  19. a KaanicheF. HamedA. ElleuchL. Purification and characterization of seven bioactive compounds from the newly isolated Streptomyces cavourensis TN638 strain via solid-state fermentation.Microb. Pathog.202014210410610.1016/j.micpath.2020.10410632109569
    [Google Scholar]
  20. b FenicalW. JensenP.R. MincerT.J. Marine actinomycete taxon for drug and fermentation product discovery.U.S. Patent US7879576B22011
    [Google Scholar]
  21. BallavS. KerkarS. ThomasS. AugustineN. Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing anti-bacterial metabolites.J. Biosci. Bioeng.2015119332333010.1016/j.jbiosc.2014.08.01725449757
    [Google Scholar]
  22. JalaliH.K. SalamatzadehA. JalaliA.K. KashaniH.H. AsbchinS.A. IssazadehK. Antagonistic activity of Nocardia brasiliensis PTCC 1422 against isolated Enterobacteriaceae from urinary tract infections.Probiotics Antimicrob. Proteins201681414510.1007/s12602‑016‑9207‑026920557
    [Google Scholar]
  23. RamachandranG. RajivgandhiG. MaruthupandyM. ManoharanN. Isolation and identification of antibacterial compound from marine endophytic actinomycetes against multi drug resistant bacteria.Ann Microbiol Immunol2018111003
    [Google Scholar]
  24. YounisK.M. UsupG. AhmadA. Secondary metabolites produced by marine streptomyces as antibiofilm and quorum-sensing inhibitor of uropathogen Proteus mirabilis.Environ. Sci. Pollut. Res. Int.20162354756476710.1007/s11356‑015‑5687‑926538254
    [Google Scholar]
  25. DesoukyS.E. ShojimaA. SinghR.P. Cyclodepsipeptides produced by actinomycetes inhibit cyclic-peptide-mediated quorum sensing in Gram-positive bacteria.FEMS Microbiol. Lett.201536214fnv10910.1093/femsle/fnv10926149266
    [Google Scholar]
  26. KauA.L. MartinS.M. LyonW. HayesE. CaparonM.G. HultgrenS.J. Enterococcus faecalis tropism for the kidneys in the urinary tract of C57BL/6J mice.Infect. Immun.20057342461246810.1128/IAI.73.4.2461‑2468.200515784592
    [Google Scholar]
  27. McBrayerD.N. GantmanB.K. CameronC.D. Tal-GanY. An entirely solid phase peptide synthesis-based strategy for synthesis of gelatinase biosynthesis-activating pheromone (gbap) analogue libraries: investigating the structure–activity relationships of the enterococcus faecalis quorum sensing signal.Org. Lett.201719123295329810.1021/acs.orglett.7b0144428590764
    [Google Scholar]
  28. BoseU. HewavitharanaA. NgY. ShawP. FuerstJ. HodsonM. LC-MS-based metabolomics study of marine bacterial secondary metabolite and antibiotic production in Salinispora arenicola.Mar. Drugs201513124926610.3390/md1301024925574739
    [Google Scholar]
  29. PetkovićH. LukežičT. ŠuškovićJ. Biosynthesis of oxytetracycline by Streptomyces rimosus: past, present and future directions in the development of tetracycline antibiotics.Food Technol. Biotechnol.201755131310.17113/ftb.55.01.17.461728559729
    [Google Scholar]
  30. LuC. LiaoG. ZhangJ. TanH. Identification of novel tylosin analogues generated by a wblA disruption mutant of Streptomyces ansochromogenes.Microb. Cell Fact.201514117310.1186/s12934‑015‑0359‑526525981
    [Google Scholar]
  31. SomN.F. HeineD. HolmesN.A. The conserved actinobacterial two-component system MtrAB coordinates chloramphenicol production with sporulation in Streptomyces venezuelae NRRL B-65442.Front. Microbiol.20178114510.3389/fmicb.2017.0114528702006
    [Google Scholar]
  32. DhakalD. ShresthaA. ThuanN.H. Bioactive compounds from nocardia: biosynthesis and production. In: Pharmaceuticals from Microbes.ChamSpringer2019497410.1007/978‑3‑030‑04675‑0_3
    [Google Scholar]
  33. DebonoM. GordeeR.S. Antibiotics that inhibit fungal cell wall development.Annu. Rev. Microbiol.199448147149710.1146/annurev.mi.48.100194.0023517826015
    [Google Scholar]
  34. NguyenT.B. KitaniS. ShimmaS. NihiraT. Butenolides from Streptomyces albus J1074 act as external signals to stimulate avermectin production in Streptomyces avermitilis.Appl. Environ. Microbiol.2018849e02791e1710.1128/AEM.02791‑1729500256
    [Google Scholar]
  35. BetancurL.A. Naranjo-GayborS.J. Vinchira-VillarragaD.M. Marine Actinobacteria as a source of compounds for phytopathogen control: An integrative metabolic-profiling/bioactivity and taxonomical approach.PLoS One2017122e017014810.1371/journal.pone.017014828225766
    [Google Scholar]
  36. ThornsberryC. BarryA.L. JonesR.N. BakerC.N. BadalR.E. PackerR.R. Comparison of in vitro activity of Sch 21420, a gentamicin B derivative, with those of amikacin, gentamicin, netilmicin, sisomicin, and tobramycin.Antimicrob. Agents Chemother.198018233834510.1128/AAC.18.2.3387447410
    [Google Scholar]
  37. ZhaoX.Q. GustB. HeideL. S-Adenosylmethionine (SAM) and antibiotic biosynthesis: effect of external addition of SAM and of overexpression of SAM biosynthesis genes on novobiocin production in Streptomyces.Arch. Microbiol.2010192428929710.1007/s00203‑010‑0548‑x20177662
    [Google Scholar]
  38. LiJ. KimS.G. BlenisJ. Rapamycin: one drug, many effects.Cell Metab.201419337337910.1016/j.cmet.2014.01.00124508508
    [Google Scholar]
  39. OliynykM. SamborskyyM. LesterJ.B. Complete genome sequence of the erythromycin-producing bacterium Saccharopolyspora erythraea NRRL23338.Nat. Biotechnol.200725444745310.1038/nbt129717369815
    [Google Scholar]
  40. TakanoH. ToriumiN. HirataM. An ABC transporter involved in the control of streptomycin production in Streptomyces griseus.FEMS Microbiol. Lett.201636314fnw14910.1093/femsle/fnw14927268270
    [Google Scholar]
  41. LeeD.W. NgB.G. KimB.S. Increased valinomycin production in mutants of Streptomyces sp. M10 defective in bafilomycin biosynthesis and branched-chain α-keto acid dehydrogenase complex expression.J. Ind. Microbiol. Biotechnol.201542111507151710.1007/s10295‑015‑1679‑526335568
    [Google Scholar]
  42. YinS. WangW. WangX. Identification of a cluster-situated activator of oxytetracycline biosynthesis and manipulation of its expression for improved oxytetracycline production in Streptomyces rimosus.Microb. Cell Fact.20151411210.1186/s12934‑015‑0231‑725886456
    [Google Scholar]
  43. SuC. ZhaoX. QiuR. TangL. Construction of the co-expression plasmids of fostriecin polyketide synthases and heterologous expression in Streptomyces.Pharm. Biol.201553226927410.3109/13880209.2014.91495625427408
    [Google Scholar]
  44. Ait AssouS. AnissiJ. SendideK. El HassouniM. Diversity and antimicrobial activities of actinobacteria isolated from mining soils in Midelt Region, Morocco.Sci World J2023202311910.1155/2023/610667336733955
    [Google Scholar]
  45. GebreyohannesG. MogesF. SahileS. RajaN. Isolation and characterization of potential antibiotic producing actinomycetes from water and sediments of Lake Tana, Ethiopia.Asian Pac. J. Trop. Biomed.20133642643510.1016/S2221‑1691(13)60092‑123730554
    [Google Scholar]
  46. RossoliniG. ThallerM. Coping with antibiotic resistance: contributions from genomics.Genome Med.2010221510.1186/gm13620236502
    [Google Scholar]
  47. SupongK. SripreechasakP. TanasupawatS. DanwisetkanjanaK. RachtaweeP. PittayakhajonwutP. Investigation on antimicrobial agents of the terrestrial Streptomyces sp. BCC71188.Appl. Microbiol. Biotechnol.2017101253354310.1007/s00253‑016‑7804‑127554496
    [Google Scholar]
  48. KimM.S. ChoW.J. SongM.C. Engineered biosynthesis of milbemycins in the avermectin high-producing strain Streptomyces avermitilis.Microb. Cell Fact.2017161910.1186/s12934‑017‑0626‑828095865
    [Google Scholar]
  49. LiB. WeverW.J. WalshC.T. BowersA.A. Dithiolopyrrolones: biosynthesis, synthesis, and activity of a unique class of disulfide-containing antibiotics.Nat. Prod. Rep.201431790592310.1039/C3NP70106A24835149
    [Google Scholar]
  50. GonzálezA. RodríguezM. BrañaA.F. MéndezC. SalasJ.A. OlanoC. New insights into paulomycin biosynthesis pathway in Streptomyces albus J1074 and generation of novel derivatives by combinatorial biosynthesis.Microb. Cell Fact.20161515610.1186/s12934‑016‑0452‑427001601
    [Google Scholar]
  51. Sarmiento-VizcaínoA. BrañaA.F. GonzálezV. Atmospheric dispersal of bioactive Streptomyces albidoflavus strains among terrestrial and marine environments.Microb. Ecol.201671237538610.1007/s00248‑015‑0654‑z26224165
    [Google Scholar]
  52. DashtiY. GrkovicT. AbdelmohsenU. HentschelU. QuinnR. Production of induced secondary metabolites by a co-culture of sponge-associated actinomycetes, Actinokineospora sp. EG49 and Nocardiopsis sp. RV163.Mar. Drugs20141253046305910.3390/md1205304624857962
    [Google Scholar]
  53. ShahA.M. HussainA. MushtaqS. Antimicrobial investigation of selected soil actinomycetes isolated from unexplored regions of Kashmir Himalayas, India.Microb. Pathog.2017110939910.1016/j.micpath.2017.06.01728647504
    [Google Scholar]
  54. WahlaV. SinghT. Screening and characterization of actinobacteria from soil for their antifungal activity against fusarium oxysporum.Adv Pharmacol Toxicol201718211
    [Google Scholar]
  55. LiX.G. TangX.M. XiaoJ. Harnessing the potential of halogenated natural product biosynthesis by mangrove-derived actinomycetes.Mar. Drugs201311103875389010.3390/md1110387524129229
    [Google Scholar]
  56. AouicheA. MeklatA. BijaniC. ZitouniA. SabaouN. MathieuF. Production of vineomycin A1 and chaetoglobosin A by Streptomyces sp. PAL114.Ann. Microbiol.20156531351135910.1007/s13213‑014‑0973‑1
    [Google Scholar]
  57. IbeyaimaA. DwivediA.K. SainiN. GuptaS. SarethyI.P. Saccharothrix sp. TD-093 from the Thar Desert, India: metabolite fingerprinting of antimicrobial compounds and in silico analysis.Curr. Microbiol.201774333434310.1007/s00284‑016‑1183‑928120024
    [Google Scholar]
  58. GurungT.D. SherpaC. AgrawalV.P. LekhakB. Isolation and characterization of antibacterial Actinobacteria from soil samples of Kalapatthar, Mount Everest Region.NAST200910173182
    [Google Scholar]
  59. SinghV. HaqueS. SinghH. Isolation, screening, and identification of novel isolates of Actinobacteria from India for antimicrobial applications.Front. Microbiol.20167192110.3389/fmicb.2016.0192127999566
    [Google Scholar]
  60. AjunwaO.M. AuduJ.O. AdedejiB.A. Ja’afaruM.I. Assessment of in vitro effects of chlorpyrifos on biomass and antimicrobial production functionality of Actinobacteria isolated from soils in Yola, Nigeria.Ann. N. Y. Acad. Sci.2016965257
    [Google Scholar]
  61. IgarashiM. KinoshitaN. IkedaT. NakagawaE. HamadaM. TakeuchiT. Formamicin, a novel antifungal antibiotic produced by a strain of saccharothvix sp.J. Antibiot.1997501192693110.7164/antibiotics.50.9269592565
    [Google Scholar]
  62. LangM.E. SibandaT. LouwS. UzabakirihoJ.D. Antimicrobial potential of the endophytic actinobacteria isolated from Harpagophytum procumbens: A southern African medicinal plant.S. Afr. J. Bot.202315626827710.1016/j.sajb.2023.03.030
    [Google Scholar]
  63. GolinskaP. WypijM. AgarkarG. RathodD. DahmH. RaiM. Endophytic actinobacteria of medicinal plants: diversity and bioactivity.Antonie van Leeuwenhoek2015108226728910.1007/s10482‑015‑0502‑726093915
    [Google Scholar]
  64. RemaliJ. SarminN.I.M. NgC.L. Genomic characterization of a new endophytic Streptomyces kebangsaanensis identifies biosynthetic pathway gene clusters for novel phenazine antibiotic production.PeerJ20175e373810.7717/peerj.373829201559
    [Google Scholar]
  65. ChandrakarS GuptaAK Actinomycin-producing endophytic Streptomyces parvulus associated with root of aloe vera and optimization of conditions for antibiotic production.Prob antimicr prot2018301510.1007/s12602‑018‑9451‑630058033
    [Google Scholar]
  66. ShanW. ZhouY. LiuH. YuX. Endophytic Actinobacteria from tea plants (Camellia sinensis): Isolation, abundance, antimicrobial, and plant-growth-promoting activities.BioMed Res. Int.2018201811210.1155/2018/147030530519568
    [Google Scholar]
  67. RajivgandhiG. VijayanR. KannanM. SanthanakrishnanM. ManoharanN. Molecular characterization and antibacterial effect of endophytic actinomycetes Nocardiopsis sp. GRG1 (KT235640) from brown algae against MDR strains of uropathogens.Bioact. Mater.20161214015010.1016/j.bioactmat.2016.11.00229744403
    [Google Scholar]
  68. GoudaS. DasG. SenS.K. ShinH.S. PatraJ.K. Endophytes: a treasure house of bioactive compounds of medicinal importance.Front. Microbiol.20167153810.3389/fmicb.2016.0153827746767
    [Google Scholar]
  69. PaulS. ChakrabortyA.P. Studies on endophytic actinobacteria as plant growth promoters and biocontrol agents. In: Actinobacteria-Diversity.Applications and Medical Aspects. IntechOpen202227410.5772/intechopen.105169
    [Google Scholar]
  70. RibeiroI. GirãoM. AlexandrinoD.A.M. Diversity and bioactive potential of actinobacteria isolated from a coastal marine sediment in northern Portugal.Microorganisms2020811169110.3390/microorganisms811169133143202
    [Google Scholar]
  71. CastilloU.F. StrobelG.A. FordE.J. Munumbicins, wide-spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans a aThe GenBank accession number for the sequence determined in this work is AY127079.Microbiology200214892675268510.1099/00221287‑148‑9‑267512213914
    [Google Scholar]
  72. EzraD. CastilloU.F. StrobelG.A. Coronamycins, peptide antibiotics produced by a verticillate Streptomyces sp. (MSU-2110) endophytic on Monstera sp.Microbiology2004150478579310.1099/mic.0.26645‑015073289
    [Google Scholar]
  73. GosF.M.W.R. SaviD.C. ShaabanK.A. Antibacterial activity of endophytic Actinobacteria isolated from the medicinal plant Vochysia divergens (Pantanal, Brazil).Front. Microbiol.20178164210.3389/fmicb.2017.0164228932210
    [Google Scholar]
  74. SainiP. GangwarM. KaliaA. SinghN. NarangD. Isolation of endophytic actinomycetes from Syzygium cumini and their antimicrobial activity against human pathogens.J. Appl. Nat. Sci.20168141642210.31018/jans.v8i1.809
    [Google Scholar]
  75. YangH.S. QiaoX.X. CuiQ. XuX.H. First synthesis of (±)-cedarmycin B.Chin. Chem. Lett.20092091023102410.1016/j.cclet.2009.04.029
    [Google Scholar]
  76. SinghR. DubeyA.K. Endophytic Actinobacteria as emerging source for therapeutic compounds.Indo Glob. J. Pharm. Sci.20155210611610.35652/IGJPS.2015.11
    [Google Scholar]
  77. LertcanawanichakulM. ChawawisitK. Identification of Streptomyces spp. isolated from air samples and its cytotoxicity of anti-MRSA bioactive compounds.Biocatal. Agric. Biotechnol.20192010123610.1016/j.bcab.2019.101236
    [Google Scholar]
  78. BarkaE.A. VatsaP. SanchezL. Taxonomy, physiology, and natural products of Actinobacteria.Microbiol. Mol. Biol. Rev.201680114310.1128/MMBR.00019‑1526609051
    [Google Scholar]
  79. LeeL.H. GohB.H. ChanK.G. Actinobacteria: Prolific producers of bioactive metabolites.Front. Microbiol.20201111161210.3389/fmicb.2020.0161232973689
    [Google Scholar]
  80. AminD.H. AbdallahN.A. AbolmaatyA. TolbaS. WellingtonE.M.H. Microbiological and molecular insights on rare Actinobacteria harboring bioactive prospective.Bull. Natl. Res. Cent.2020441510.1186/s42269‑019‑0266‑8
    [Google Scholar]
/content/journals/biot/10.2174/0118722083300181240429072502
Loading
/content/journals/biot/10.2174/0118722083300181240429072502
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test