Skip to content
2000
image of Molecular Docking, Pharmacophore Modeling, and ADMET Prediction of Novel Heterocyclic Leads as Glucokinase Activators

Abstract

Background

A pivotal impetus has driven the development of numerous small molecules aiming to improve therapeutic strategies for type 2 diabetes. Glucokinase (GK) activation has been offered a new realm of therapeutic antidiabetic activity with novel heterocyclic derivatives. In the context of antidiabetic drug design, GK is an interesting and newly validated target. A key enzyme needed for blood glucose homeostasis is Glucokinase, which is dysfunctional in individuals with type 2 diabetes. Heterocyclic derivatives are utilized in this innovative approach to activate GK enzymes as medicinal agents that will significantly improve type 2 diabetes management.

Objective

To address type 2 diabetes, as well as minimize unwanted side effects, this research endeavor aimed to develop activators of glucokinase.

Methods

A rigorous scrutiny was conducted of the Maybridge online repository, which houses a formidable collection of 53,000 lead compounds. A collection of 125 compounds that contain the thiazolidinedione core was selected from this extensive collection. The structures were generated using ChemDraw 2D, stabilized conformation with ChemBioDraw Ultra, and docked using Auto Dock Vina 1.5.6 in this methodology. In addition, log P was predicted online using the Swiss ADME algorithm. The PKCSM software was used to predict the toxicity of the leading compounds.

Results

The highest binding affinity was found for AS72 and AS108 to GK receptors. GI absorption and excretion of these compounds were efficient due to Lipinski's Rule of Five compliance. When compared with the standard drugs Dorzagliatin (GKA) and MRK (co-crystallized ligand), these substances demonstrated a notable lack of AMES toxicity, skin sensitization, and hepatotoxicity.

Conclusion

In recent studies, lead molecules that possess enhanced pharmacokinetic profiles, increased binding affinity, and lower toxicity were developed to act as glucokinase activators.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230325278240821053346
2024-09-30
2025-02-17
Loading full text...

Full text loading...

References

  1. Ma C.X. Ma X.N. Guan C.H. Li Y.D. Mauricio D. Fu S.B. Cardiovascular disease in type 2 diabetes mellitus: progress toward personalized management. Cardiovasc. Diabetol. 2022 21 1 74 10.1186/s12933‑022‑01516‑6 35568946
    [Google Scholar]
  2. Kahn S.E. The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of Type 2 diabetes. Diabetologia 2003 46 1 3 19 10.1007/s00125‑002‑1009‑0 12637977
    [Google Scholar]
  3. Harding J.L. Pavkov M.E. Magliano D.J. Shaw J.E. Gregg E.W. Global trends in diabetes complications: a review of current evidence. Diabetologia 2019 62 1 3 16 10.1007/s00125‑018‑4711‑2 30171279
    [Google Scholar]
  4. Akbari P. Sosina O.A. Bovijn J. Landheer K. Nielsen J.B. Kim M. Aykul S. De T. Haas M.E. Hindy G. Lin N. Dinsmore I.R. Luo J.Z. Hectors S. Geraghty B. Germino M. Panagis L. Parasoglou P. Walls J.R. Halasz G. Atwal G.S. Della Gatta G. Jones M. LeBlanc M.G. Still C.D. Carey D.J. Giontella A. Orho-Melander M. Berumen J. Kuri-Morales P. Alegre-Díaz J. Torres J.M. Emberson J.R. Collins R. Rader D.J. Zambrowicz B. Murphy A.J. Balasubramanian S. Overton J.D. Reid J.G. Shuldiner A.R. Cantor M. Abecasis G.R. Ferreira M.A.R. Sleeman M.W. Gusarova V. Altarejos J. Harris C. Economides A.N. Idone V. Karalis K. Della Gatta G. Mirshahi T. Yancopoulos G.D. Melander O. Marchini J. Tapia-Conyer R. Locke A.E. Baras A. Verweij N. Lotta L.A. Regeneron Genetics Center DiscovEHR Collaboration Multiancestry exome sequencing reveals INHBE mutations associated with favorable fat distribution and protection from diabetes. Nat. Commun. 2022 13 1 4844 10.1038/s41467‑022‑32398‑7 35999217
    [Google Scholar]
  5. Pfefferkorn J.A. Tu M. Filipski K.J. Guzman-Perez A. Bian J. Aspnes G.E. Sammons M.F. Song W. Li J.C. Jones C.S. Patel L. Rasmusson T. Zeng D. Karki K. Hamilton M. Hank R. Atkinson K. Litchfield J. Aiello R. Baker L. Barucci N. Bourassa P. Bourbounais F. D’Aquila T. Derksen D.R. MacDougall M. Robertson A. The design and synthesis of indazole and pyrazolopyridine based glucokinase activators for the treatment of Type 2 diabetes mellitus. Bioorg. Med. Chem. Lett. 2012 22 23 7100 7105 10.1016/j.bmcl.2012.09.082 23089526
    [Google Scholar]
  6. Sharma P. Thakur A. Goyal A. Grewal AS. Molecular docking, 2D-QSAR, and ADMET studies of 4-sulfonyl-2-pyridone heterocycle as a potential glucokinase activator. Resul. Chem. 2023 6 101105 10.1016/j.rechem.2023.101105
    [Google Scholar]
  7. Nakamura A. Omori K. Terauchi Y. Glucokinase activation or inactivation: Which will lead to the treatment of type 2 diabetes? Diabetes Obes. Metab. 2021 23 10 2199 2206 10.1111/dom.14459 34105236
    [Google Scholar]
  8. Johnson T.O. Humphries P.S. Glucokinase activators for the treatment of type 2 diabetes. Annu. Rep. Med. Chem. 2006 41 141 154 10.1016/S0065‑7743(06)41008‑3
    [Google Scholar]
  9. Pfefferkorn J.A. Strategies for the design of hepatoselective glucokinase activators to treat type 2 diabetes. Expert Opin. Drug Discov. 2013 8 3 319 330 10.1517/17460441.2013.748744 23289965
    [Google Scholar]
  10. Younossi Z.M. Tampi R.P. Racila A. Qiu Y. Burns L. Younossi I. Nader F. Economic and clinical burden of nonalcoholic steatohepatitis in patients with type 2 Diabetes in the U.S. Diabetes Care 2020 43 2 283 289 10.2337/dc19‑1113 31658974
    [Google Scholar]
  11. Lavynenko O. Abdul-Ghani M. Alatrach M. Puckett C. Adams J. Abdelgani S. Alkhouri N. Triplitt C. Clarke G.D. Vasquez J.A. Li J. Cersosimo E. Gastaldelli A. DeFronzo R.A. Combination therapy with pioglitazone/exenatide/metformin reduces the prevalence of hepatic fibrosis and steatosis: The efficacy and durability of initial combination therapy for type 2 diabetes ( EDICT ). Diabetes Obes. Metab. 2022 24 5 899 907 10.1111/dom.14650 35014145
    [Google Scholar]
  12. Bae J. Park T. Kim H. Lee M. Cha B.S. Lobeglitazone: A novel thiazolidinedione for the management of type 2 Diabetes Mellitus. Diabetes Metab. J. 2021 45 3 326 336 10.4093/dmj.2020.0272 33866775
    [Google Scholar]
  13. Consoli A. Formoso G. Do thiazolidinediones still have a role in treatment of type 2 diabetes mellitus? Diabetes Obes. Metab. 2013 15 11 967 977 10.1111/dom.12101 23522285
    [Google Scholar]
  14. Amin S. Sheikh K.A. Iqubal A. Ahmed Khan M. Shaquiquzzaman M. Tasneem S. Khanna S. Najmi A.K. Akhter M. Haque A. Anwer T. Mumtaz Alam M. Synthesis, in-Silico studies and biological evaluation of pyrimidine based thiazolidinedione derivatives as potential anti-diabetic agent. Bioorg. Chem. 2023 134 106449 10.1016/j.bioorg.2023.106449 36889200
    [Google Scholar]
  15. Sakamoto J. Kimura H. Moriyama S. Odaka H. Momose Y. Sugiyama Y. Sawada H. Activation of human peroxisome proliferator-activated receptor (PPAR) subtypes by pioglitazone. Biochem. Biophys. Res. Commun. 2000 278 3 704 711 10.1006/bbrc.2000.3868 11095972
    [Google Scholar]
  16. Dormandy J.A. Charbonnel B. Eckland D.J.A. Erdmann E. Massi-Benedetti M. Moules I.K. Skene A.M. Tan M.H. Lefèbvre P.J. Murray G.D. Standl E. Wilcox R.G. Wilhelmsen L. Betteridge J. Birkeland K. Golay A. Heine R.J. Korányi L. Laakso M. Mokáň M. Norkus A. Pirags V. Podar T. Scheen A. Scherbaum W. Schernthaner G. Schmitz O. Škrha J. Smith U. Tatoň J. PROactive Investigators Secondary prevention of macrovascular events in patients with type 2 diabetes in the PROactive Study (PROspective pioglitAzone Clinical Trial In macroVascular Events): a randomised controlled trial. Lancet 2005 366 9493 1279 1289 10.1016/S0140‑6736(05)67528‑9 16214598
    [Google Scholar]
  17. Home P.D. Pocock S.J. Beck-Nielsen H. Curtis P.S. Gomis R. Hanefeld M. Jones N.P. Komajda M. McMurray J.J.V. RECORD Study Team Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 2009 373 9681 2125 2135 10.1016/S0140‑6736(09)60953‑3 19501900
    [Google Scholar]
  18. Lehmann J.M. Moore L.B. Smith-Oliver T.A. Wilkison W.O. Willson T.M. Kliewer S.A. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor gamma (PPAR gamma). J. Biol. Chem. 1995 270 22 12953 12956 10.1074/jbc.270.22.12953 7768881
    [Google Scholar]
  19. Khan A. Unnisa A. Sohel M. Date M. Panpaliya N. Saboo S.G. Siddiqui F. Khan S. Investigation of phytoconstituents of Enicostemma littorale as potential glucokinase activators through molecular docking for the treatment of type 2 diabetes mellitus. In Silico Pharmacol. 2021 10 1 1 6 10.1007/s40203‑021‑00116‑8 34926125
    [Google Scholar]
  20. Ren Y. Li L. Wan L. Huang Y. Cao S. Glucokinase as an emerging anti-diabetes target and recent progress in the development of its agonists. J. Enzyme Inhib. Med. Chem. 2022 37 1 606 615 10.1080/14756366.2021.2025362 35067153
    [Google Scholar]
  21. Sharma S. Wadhwa K. Choudhary M. Budhwar V. Ethnopharmacological perspectives of glucokinase activators in the treatment of diabetes mellitus. Nat. Prod. Res. 2022 36 11 2962 2976 10.1080/14786419.2021.1931187 34044681
    [Google Scholar]
  22. Kaur A. Thakur S. Deswal G. Chopra B. Dhingra A.K. Guarve K. Grewal A.S. In silico docking based screening of constituents from Persian shallot as modulators of human glucokinase. J. Diabetes Metab. Disord. 2022 22 1 547 570 10.1007/s40200‑022‑01176‑z 37255832
    [Google Scholar]
  23. Ashcroft F.M. Lloyd M. Haythorne E.A. Glucokinase activity in diabetes: too much of a good thing? Trends Endocrinol. Metab. 2023 34 2 119 130 10.1016/j.tem.2022.12.007 36586779
    [Google Scholar]
  24. Gao Q. Zhang W. Li T. Yang G. Zhu W. Chen N. Jin H. The efficacy and safety of glucokinase activators for the treatment of type-2 diabetes mellitus. Medicine 2021 100 40 e27476 10.1097/MD.0000000000027476 34622877
    [Google Scholar]
  25. Song L. Cao F. Niu S. Xu M. Liang R. Ding K. Lin Z. Yao X. Liu D. Population pharmacokinetic/pharmacodynamic analysis of the glucokinase activator pb201 in healthy volunteers and patients with type 2 Diabetes Mellitus: Facilitating the clinical development of PB201 in China. Clin. Pharmacokinet. 2023 2023 1 6 37985591
    [Google Scholar]
  26. Yang W. Evaluation of Efficacy and Safety of Glucokinase Activators-A Systematic Review and Meta-analysis. Diabetes. 2023 72 S1 860
    [Google Scholar]
  27. Gersing S. Cagiada M. Gebbia M. Gjesing A.P. Coté A.G. Seesankar G. Li R. Tabet D. Weile J. Stein A. Gloyn A.L. Hansen T. Roth F.P. Lindorff-Larsen K. Hartmann-Petersen R. A comprehensive map of human glucokinase variant activity. Genome Biol. 2023 24 1 97 10.1186/s13059‑023‑02935‑8 37101203
    [Google Scholar]
  28. Liu J. Fu H. Kang F. Ning G. Ni Q. Wang W. Wang Q. β‐Cell glucokinase expression was increased in type 2 diabetes subjects with better glycemic control. J. Diabetes 2023 15 5 409 418 10.1111/1753‑0407.13380 36942376
    [Google Scholar]
  29. Khamlich J. Douiyeh I. Saih A. Moussamih S. Regragui A. Kettani A. Safi A. Molecular docking, pharmacokinetic prediction and molecular dynamics simulations of tankyrase inhibitor compounds with the protein glucokinase, induced in the development of diabetes. J. Biomol. Struct. Dyn. 2023 ••• 1 3 37199320
    [Google Scholar]
  30. Paliwal A. Paliwal V. Jain S. Paliwal S. Sharma S. Current Insight on the Role of Glucokinase and Glucokinase Regulatory Protein in Diabetes. Mini Rev. Med. Chem. 2024 24 7 674 688 10.2174/1389557523666230823151927 37612862
    [Google Scholar]
  31. Santos-Ballardo C.L. Montes-Ávila J. Rendon-Maldonado J.G. Ramos-Payan R. Montaño S. Sarmiento-Sánchez J.I. Acosta-Cota S.J. Ochoa-Terán A. Bastidas-Bastidas P.J. Osuna-Martínez U. Design, synthesis, in silico, and in vitro evaluation of benzylbenzimidazolone derivatives as potential drugs on α-glucosidase and glucokinase as pharmacological targets. RSC Advances 2023 13 31 21153 21162 10.1039/D3RA02916F 37449031
    [Google Scholar]
  32. Hamid A.A. Abdul-Rasheed O.F. Mahdi M.F. Atia A.J. Design, synthesis, characterization, and biological evaluation of new diazole-benzamide derivatives as glucokinase activators with antihyperglycemic activity. Egypt. J. Chem. 2022 65 8 451 469
    [Google Scholar]
  33. Kazi A.A. Chatpalliwar V.A. Design, Synthesis, Molecular Docking and In vitro Biological Evaluation of Benzamide Derivatives as Novel Glucokinase Activators. Curr. Enzym. Inhib. 2022 18 1 61 75 10.2174/1573408018666220218093451
    [Google Scholar]
  34. Arora S. Grewal A.S. Sharma N. Arora K. Dhalio E. Singh S. Design, synthesis, and evaluation of some novel N-benzothiazol-2-yl benzamide derivatives as allosteric activators of human glucokinase. J. Appl. Pharm. Sci. 2021 11 1 38 47
    [Google Scholar]
  35. Khadse S.C. Amnerkar N.D. Dighole K.S. Dhote A.M. Patil V.R. Lokwani D.K. Ugale V.G. Charbe N.B. Chatpalliwar V.A. Hetero-substituted sulfonamido-benzamide hybrids as glucokinase activators: Design, synthesis, molecular docking and in-silico ADME evaluation. J. Mol. Struct. 2020 1222 128916 10.1016/j.molstruc.2020.128916
    [Google Scholar]
  36. Khadse S.C. Amnerkar N.D. Dave M.U. Lokwani D.K. Patil R.R. Ugale V.G. Charbe N.B. Chatpalliwar V.A. Quinazolin-4-one derivatives lacking toxicity-producing attributes as glucokinase activators: design, synthesis, molecular docking, and in-silico ADMET prediction. Future Journal of Pharmaceutical Sciences 2019 5 1 11 10.1186/s43094‑019‑0012‑y
    [Google Scholar]
  37. Grewal A.S. Kharb R. Prasad D.N. Dua J.S. Lather V. N ‐pyridin‐2‐yl benzamide analogues as allosteric activators of glucokinase: Design, synthesis, in vitro, in silico and in vivo evaluation. Chem. Biol. Drug Des. 2019 93 3 364 372 10.1111/cbdd.13423 30369030
    [Google Scholar]
  38. Charaya N. Pandita D. Grewal A.S. Lather V. Design, synthesis and biological evaluation of novel thiazol-2-yl benzamide derivatives as glucokinase activators. Comput. Biol. Chem. 2018 73 221 229 10.1016/j.compbiolchem.2018.02.018 29518630
    [Google Scholar]
  39. Kohn T.J. Du X. Lai S. Xiong Y. Komorowski R. Veniant M. Fu Z. Jiao X. Pattaropong V. Chow D. Cardozo M. Jin L. Conn M. DeWolf W.E. Jr Kraser C.F. Hinklin R.J. Boys M.L. Medina J.C. Houze J. Dransfield P. Coward P. 5-Alkyl-2-urea-substituted pyridines: identification of efficacious glucokinase activators with improved properties. ACS Med. Chem. Lett. 2016 7 7 666 670 10.1021/acsmedchemlett.6b00145 27437074
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230325278240821053346
Loading
/content/journals/aiaamc/10.2174/0118715230325278240821053346
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: mechanism ; binding affinity ; docking ; thiazolidinedione derivatives ; Diabetes ; drug design
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test