Skip to content
2000
image of Dry-feed Added Quercetin Mitigates Cyclophosphamide-induced Oxidative Stress, Inflammation and Gonadal Fibrosis in Adult Male Rats

Abstract

Background

Cyclophosphamide (CYP), a widely used cancer chemotherapeutic agent has been linked with male gonadotoxicity, resulting in infertility. The notion that potent antioxidants could be beneficial in mitigating CYP-induced gonadotoxicity necessitated this research. Therefore, we examined the effects of feed-added quercetin on CYP-induced gonadotoxicity in male rats.

Methods

Male postpubertal rats were randomly assigned into six groups of 10 rats each. The normal control (fed standard rodent diet) and two groups fed quercetin-supplemented diet at 100 and 200 mg/kg of feed received normal saline intraperitoneally at 2 ml/kg daily. A fourth group which served as the CYP control (fed standard rodent diet) and the last two groups fed quercetin at 100 and 200 mg/kg of feed were administered CYP at 150 mg/kg/day. Rats were administered normal saline or CYP intraperitoneally on days 1 and 2, while standard diet or feed-added quercetin was administered daily for 21 days. On day 22, half of the animals were either sacrificed or paired with age-matched females for fertility assessment. Estimation of testosterone levels, antioxidant, anti-inflammatory markers, and histomorphological examination of the testis and epididymis was also assessed.

Results

The administration of CYP was associated with weight loss, decreased food intake, decreased antioxidant capacity, increased gonadosomatic index, increased lipid peroxidation, sub-fertility, and histological evidence of gonadal injury. However, administration of quercetin reversed CYP-induced changes.

Conclusion

The result of this study suggests that dietary quercetin supplementation has the ability to mitigate CYP induced gonadotoxicity and mitigate subfertility in male rats. However, further studies are required to assess its possible use in humans.

Loading

Article metrics loading...

/content/journals/aiaamc/10.2174/0118715230316410240821105658
2024-10-15
2024-11-26
Loading full text...

Full text loading...

References

  1. Prasad M. Goswami S. Chinnaswamy G. Banavali S.D. Kurkure P.A. Long-term outcomes in survivors of childhood cancer: A 30-year experience from India. JCO Glob. Oncol. 2022 8 8 e2200044 10.1200/GO.22.00044 36332172
    [Google Scholar]
  2. Levine J.M. Kelvin J.F. Quinn G.P. Gracia C.R. Infertility in reproductive‐age female cancer survivors. Cancer 2015 121 10 1532 1539 10.1002/cncr.29181 25649243
    [Google Scholar]
  3. Vakalopoulos I. Dimou P. Anagnostou I. Zeginiadou T. Impact of cancer and cancer treatment on male fertility. Hormones (Athens) 2015 14 4 579 589 10.14310/horm.2002.1620 26732148
    [Google Scholar]
  4. Vassilakopoulou M. Boostandoost E. Papaxoinis G. de La Motte Rouge T. Khayat D. Psyrri A. Anticancer treatment and fertility: Effect of therapeutic modalities on reproductive system and functions. Crit. Rev. Oncol. Hematol. 2016 97 328 334 10.1016/j.critrevonc.2015.08.002 26481950
    [Google Scholar]
  5. Watcho P. Mpeck I.R. Deeh Defo P.B. Wankeu-Nya M. Ngadjui E. Bonsou Fozin G.R. Kamtchouing P. Kamanyi A. Cyclophosphamide-induced reproductive toxicity: Beneficial effects of Helichrysum odoratissimum (Asteraceae) in male Wistar rats. J. Integr. Med. 2019 17 5 366 373 10.1016/j.joim.2019.07.002 31420286
    [Google Scholar]
  6. Delessard M. Saulnier J. Rives A. Dumont L. Rondanino C. Rives N. Exposure to chemotherapy during childhood or adulthood and consequences on spermatogenesis and male fertility. Int. J. Mol. Sci. 2020 21 4 1454 10.3390/ijms21041454 32093393
    [Google Scholar]
  7. Meistrich M.L. Male gonadal toxicity. Pediatr. Blood Cancer 2009 53 2 261 266 10.1002/pbc.22004 19326418
    [Google Scholar]
  8. Jalali A.S. Hasanzadeh S. Malekinejad H. Crataegus monogyna aqueous extract ameliorates cyclophosphamide-induced toxicity in rat testis: stereological evidences. Acta Med. Iran. 2012 50 1 1 8 22267371
    [Google Scholar]
  9. Park H.J. Kim J.S. Lee R. Song H. Cisplatin induces apoptosis in mouse neonatal testes organ culture. Int. J. Mol. Sci. 2022 23 21 13360 10.3390/ijms232113360 36362147
    [Google Scholar]
  10. Balcıoğlu E. Göktepe Ö. Tan F.C. Bilgici P. Yakan B. Özdamar S. The role of cur ole of curcumin against paclitax cumin against paclitaxel-induced o el-induced oxidativ xidative stress and DNA damage in testes of adult male rats. Turk. J. Med. Sci. 2023 53 1 40 50 10.55730/1300‑0144.5556 36945945
    [Google Scholar]
  11. Zi T. Liu Y. Zhang Y. Wang Z. Wang Z. Zhan S. Peng Z. Li N. Liu X. Liu F. Protective effect of melatonin on alleviating early oxidative stress induced by DOX in mice spermatogenesis and sperm quality maintaining. Reprod. Biol. Endocrinol. 2022 20 1 105 10.1186/s12958‑022‑00977‑4 35850689
    [Google Scholar]
  12. Fusco R. Salinaro A.T. Siracusa R. D’Amico R. Impellizzeri D. Scuto M. Ontario M.L. Crea R. Cordaro M. Cuzzocrea S. Di Paola R. Calabrese V. Hidrox® counteracts cyclophosphamide-induced male infertility through NRF2 pathways in a mouse model. Antioxidants 2021 10 5 778 10.3390/antiox10050778 34068924
    [Google Scholar]
  13. Saleh S. Ghanaatpisheh A. Haghshenas H. Parvin N. Mikaeiliagah E. Kargar Jahromi H. Ebrahimi B. The effect of leaf hydroalcoholic extract of Ephedra pachyclada infertility in male rats treated with cyclophosphamide: An experimental study. Int. J. Reprod. Biomed. 2023 21 4 285 294 10.18502/ijrm.v21i4.13268 37260555
    [Google Scholar]
  14. Ntemou E. Alexandri C. Lybaert P. Goossens E. Demeestere I. Oncofertility: Pharmacological protection and immature testicular tissue (ITT)-based strategies for prepubertal and adolescent male cancer patients. Int. J. Mol. Sci. 2019 20 20 5223 10.3390/ijms20205223 31640294
    [Google Scholar]
  15. Khamis T. Hegazy A.A. El-Fatah S.S.A. Abdelfattah E.R. Abdelfattah M.M.M. Fericean L.M. Arisha A.H. Hesperidin mitigates cyclophosphamide-induced testicular dysfunction via altering the hypothalamic pituitary gonadal axis and testicular steroidogenesis, inflammation, and apoptosis in male rats. Pharmaceuticals 2023 16 2 301 10.3390/ph16020301 37259444
    [Google Scholar]
  16. Ghobadi E. Moloudizargari M. Asghari M.H. Abdollahi M. The mechanisms of cyclophosphamide-induced testicular toxicity and the protective agents. Expert Opin. Drug Metab. Toxicol. 2017 13 5 525 536 10.1080/17425255.2017.1277205 28019118
    [Google Scholar]
  17. Briseño-Bugarín J. Hernández-Ochoa I. Araujo-Padilla X. Mojica-Villegas M.A. Montaño-González R.I. Gutiérrez-Salmeán G. Chamorro-Cevallos G. Phycobiliproteins ameliorate gonadal toxicity in male mice treated with cyclophosphamide. Nutrients 2021 13 8 2616 10.3390/nu13082616 34444776
    [Google Scholar]
  18. Onaolapo A.Y. Oladipo B.P. Onaolapo O.J. Cyclophosphamide-induced male subfertility in mice: An assessment of the potential benefits of Maca supplement. Andrologia 2018 50 3 e12911 10.1111/and.12911 29047156
    [Google Scholar]
  19. Onaolapo O.J. Odeniyi A.O. Jonathan S.O. Samuel M.O. Amadiegwu D. Olawale A. Tiamiyu A.O. Ojo F.O. Yahaya H.A. Ayeni O.J. Onaolapo A.Y. An investigation of the anti-parkinsonism potential of co-enzyme Q10 and co-enzyme Q10 /levodopa-carbidopa combination in mice. Curr. Aging Sci. 2021 14 1 62 75 10.2174/1874609812666191023153724 31702498
    [Google Scholar]
  20. Onaolapo A.Y. Ojo F.O. Onaolapo O.J. Biflavonoid quercetin protects against cyclophosphamide–induced organ toxicities via modulation of inflammatory cytokines, brain neurotransmitters, and astrocyte immunoreactivity. Food Chem. Toxicol. 2023 178 113879 10.1016/j.fct.2023.113879 37301500
    [Google Scholar]
  21. Asma S.T. Acaroz U. Imre K. Morar A. Shah S.R.A. Hussain S.Z. Arslan-Acaroz D. Demirbas H. Hajrulai-Musliu Z. Istanbullugil F.R. Soleimanzadeh A. Morozov D. Zhu K. Herman V. Ayad A. Athanassiou C. Ince S. Natural products/bioactive compounds as a source of anticancer drugs. Cancers 2022 14 24 6203 10.3390/cancers14246203 36551687
    [Google Scholar]
  22. Li S. Yuan S. Zhao Q. Wang B. Wang X. Li K. Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it. Biomed. Pharmacother. 2018 100 441 447 10.1016/j.biopha.2018.02.055 29475141
    [Google Scholar]
  23. Olayinka E.T. Ore A. Ola O.S. Adeyemo O.A. Protective effect of quercetin on melphalan-induced oxidative stress and impaired renal and hepatic functions in rat. Chemother. Res. Pract. 2014 2014 1 8 10.1155/2014/936526 25574394
    [Google Scholar]
  24. Albogami B. Evaluation of the antiparasitic, antihepatotoxicity, and antioxidant efficacy of quercetin and chitosan, either alone or in combination, against infection induced by Giardia lamblia in male rats. Life 2023 13 12 2316 10.3390/life13122316 38137916
    [Google Scholar]
  25. Onur M. Yalçın E. Çavuşoğlu K. Acar A. Elucidating the toxicity mechanism of AFM2 and the protective role of quercetin in albino mice. Sci. Rep. 2023 13 1 1237 10.1038/s41598‑023‑28546‑8 36690753
    [Google Scholar]
  26. Yamashita Y. Jiang H. Okada F. Kitakaze T. Yoshioka Y. Ashida H. Single oral administration of quercetin glycosides prevented acute hyperglycemia by promoting GLUT4 translocation in skeletal muscles through the activation of AMPK in mice. J. Clin. Biochem. Nutr. 2024 74 1 37 46 10.3164/jcbn.23‑30 38292121
    [Google Scholar]
  27. Rauf A. Imran M. Khan I.A. ur-Rehman M. Gilani S.A. Mehmood Z. Mubarak M.S. Anticancer potential of quercetin: A comprehensive review. Phytother. Res. 2018 32 11 2109 2130 10.1002/ptr.6155 30039547
    [Google Scholar]
  28. Tang S.M. Deng X.T. Zhou J. Li Q.P. Ge X.X. Miao L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed. Pharmacother. 2020 121 109604 10.1016/j.biopha.2019.109604 31733570
    [Google Scholar]
  29. Gasmi A. Mujawdiya P.K. Lysiuk R. Shanaida M. Peana M. Gasmi Benahmed A. Beley N. Kovalska N. Bjørklund G. Quercetin in the prevention and treatment of coronavirus infections: A focus on SARS-CoV-2. Pharmaceuticals 2022 15 9 1049 10.3390/ph15091049 36145270
    [Google Scholar]
  30. Ward A.B. Mir H. Kapur N. Gales D.N. Carriere P.P. Singh S. Quercetin inhibits prostate cancer by attenuating cell survival and inhibiting anti-apoptotic pathways. World J. Surg. Oncol. 2018 16 1 108 10.1186/s12957‑018‑1400‑z 29898731
    [Google Scholar]
  31. Kim D.H. Khan H. Ullah H. Hassan S.T.S. Šmejkal K. Efferth T. Mahomoodally M.F. Xu S. Habtemariam S. Filosa R. Lagoa R. Rengasamy K.R.R. MicroRNA targeting by quercetin in cancer treatment and chemoprotection. Pharmacol. Res. 2019 147 104346 10.1016/j.phrs.2019.104346 31295570
    [Google Scholar]
  32. Onaolapo A.Y. Adebisi E.O. Adeleye A.E. Olofinnade A.T. Onaolapo O.J. Dietary melatonin protects against behavioural, metabolic, oxidative, and organ morphological changes in mice that are fed high-fat, high- sugar diet. Endocr. Metab. Immune Disord. Drug Targets 2020 20 4 570 583 10.2174/1871530319666191009161228 32138638
    [Google Scholar]
  33. Falade J. Onaolapo A.Y. Onaolapo O.J. Evaluation of the behavioural, antioxidative and histomorphological effects of folic acid-supplemented diet in dexamethasone-induced depression in mice. Cent. Nerv. Syst. Agents Med. Chem. 2021 21 1 73 81 10.2174/1871524921666210114125355 33459248
    [Google Scholar]
  34. Onaolapo O.J. Onaolapo A.Y. Omololu T.A. Oludimu A.T. Segun-Busari T. Omoleke T. Exogenous testosterone, aging, and changes in behavioral response of gonadally intact male mice. J. Exp. Neurosci. 2016 10 JEN.S39042 10.4137/JEN.S39042 27158222
    [Google Scholar]
  35. Bridges D. Weight loss effects of methotrexate and cyclophosphamide. Oncotarget 2017 8 3 5640 10.18632/oncotarget.14569 28086214
    [Google Scholar]
  36. Feng L. Huang Q. Huang Z. Li H. Qi X. Wang Y. Liu Z. Liu X. Lu L. Optimized animal model of cyclophosphamide‐induced bone marrow suppression. Basic Clin. Pharmacol. Toxicol. 2016 119 5 428 435 10.1111/bcpt.12600 27061017
    [Google Scholar]
  37. Zhang Z. Pan T. Liu C. Shan X. Xu Z. Hong H. Lin H. Chen J. Sun H. Cyclophosphamide induced physiological and biochemical changes in mice with an emphasis on sensitivity analysis. Ecotoxicol. Environ. Saf. 2021 211 111889 10.1016/j.ecoenv.2020.111889 33461014
    [Google Scholar]
  38. Casuso R.A. Martínez-López E.J. Hita-Contreras F. Camiletti-Moirón D. Martínez-Amat A. Quercetin effects on weight gain and caloric intake in exercised rats. Biol. Sport 2014 31 1 63 67 10.5604/20831862.1086734 24917691
    [Google Scholar]
  39. Hoek-van den Hil E.F. van Schothorst E.M. van der Stelt I. Swarts H.J.M. Venema D. Sailer M. Vervoort J.J.M. Hollman P.C.H. Rietjens I.M.C.M. Keijer J. Quercetin decreases high-fat diet induced body weight gain and accumulation of hepatic and circulating lipids in mice. Genes Nutr. 2014 9 5 418 10.1007/s12263‑014‑0418‑2 25047408
    [Google Scholar]
  40. Esmaeili A. Najafabadi R.E. Kazemipour N. Beheshti S. Nazifi S. Quercetin prevents body weight loss due to the using of superparamagnetic iron oxide nanoparticles in rat. Adv. Biomed. Res. 2018 7 1 8 10.4103/abr.abr_141_17 29456979
    [Google Scholar]
  41. Nafees S. Rashid S. Ali N. Hasan S.K. Sultana S. Rutin ameliorates cyclophosphamide induced oxidative stress and inflammation in Wistar rats: Role of NFκB/MAPK pathway. Chem. Biol. Interact. 2015 231 98 107 10.1016/j.cbi.2015.02.021 25753322
    [Google Scholar]
  42. Sherif I.O. Uroprotective mechanism of quercetin against cyclophosphamide‐induced urotoxicity: Effect on oxidative stress and inflammatory markers. J. Cell. Biochem. 2018 119 9 7441 7448 10.1002/jcb.27053 29775228
    [Google Scholar]
  43. Ebokaiwe A.P. Obasi D.O. Njoku R.C.C. Osawe S. Olusanya O. Kalu W.O. Cyclophosphamide instigated hepatic-renal oxidative/inflammatory stress aggravates immunosuppressive indoleamine 2,3-dioxygenase in male rats: Abatement by quercetin. Toxicology 2021 464 153027 10.1016/j.tox.2021.153027 34748891
    [Google Scholar]
  44. Ahmed R.A. Alam M.F. Alshahrani S. Jali A.M. Qahl A.M. Khalid M. Muzafar H.M.A. Alhamami H.N. Anwer T. Capsaicin ameliorates the cyclophosphamide-induced cardiotoxicity by inhibiting free radicals generation, inflammatory cytokines, and apoptotic pathway in rats. Life 2023 13 3 786 10.3390/life13030786 36983940
    [Google Scholar]
  45. Cengiz M. Cetik Yildiz S. Demir C. Şahin İ.K. Teksoy Ö. Ayhanci A. Hepato-preventive and anti-apoptotic role of boric acid against liver injury induced by cyclophosphamide. J. Trace Elem. Med. Biol. 2019 53 1 7 10.1016/j.jtemb.2019.01.013 30910191
    [Google Scholar]
  46. Doustimotlagh A.H. Kokhdan E.P. Vakilpour H. Khalvati B. Barmak M.J. Sadeghi H. Asfaram A. Protective effect of Nasturtium officinale R. Br and quercetin against cyclophosphamide-induced hepatotoxicity in rats. Mol. Biol. Rep. 2020 47 7 5001 5012 10.1007/s11033‑020‑05556‑7 32533401
    [Google Scholar]
  47. Aghababaei F. Hadidi M. Recent advances in potential health benefits of quercetin. Pharmaceuticals 2023 16 7 1020 10.3390/ph16071020 37513932
    [Google Scholar]
  48. Kumar P. Sharma S. Khanna M. Raj H.G. Effect of Quercetin on lipid peroxidation and changes in lung morphology in experimental influenza virus infection. Int. J. Exp. Pathol. 2003 84 3 127 134 10.1046/j.1365‑2613.2003.00344.x 12974942
    [Google Scholar]
  49. Delessard M. Saulnier J. Dumont L. Rives-Feraille A. Rives N. Rondanino C. Paradoxical risk of reduced fertility after exposure of prepubertal mice to vincristine or cyclophosphamide at low gonadotoxic doses in humans. Sci. Rep. 2020 10 1 17859 10.1038/s41598‑020‑74862‑8 33082498
    [Google Scholar]
  50. Nayak G. Rao A. Mullick P. Mutalik S. Kalthur S.G. Adiga S.K. Kalthur G. Ethanolic extract of Moringa oleifera leaves alleviate cyclophosphamide-induced testicular toxicity by improving endocrine function and modulating cell specific gene expression in mouse testis. J. Ethnopharmacol. 2020 259 112922 10.1016/j.jep.2020.112922 32422360
    [Google Scholar]
  51. Namoju R. Chilaka N.K. Beda D.P. Avanapu S.R. Pre-pubertal cyclophosphamide exposure-induced mutilation in spermatogenesis, steroidogenesis and testicular architecture in SD rat: Protection from an alternative herbal viagra. Rev. Int. Androl. 2021 19 3 177 186 10.1016/j.androl.2020.01.009 32682734
    [Google Scholar]
  52. Wang Y. Zou Z. Jaisi A. Olatunji O.J. Unravelling the protective effects of emodin against cyclophosphamide induced gonadotoxicity in male wistar rats. Drug Des. Devel. Ther. 2021 15 4403 4411 10.2147/DDDT.S333383 34703213
    [Google Scholar]
  53. Altintas R. Ciftci O. Aydin M. Akpolat N. Oguz F. Beytur A. Quercetin prevents docetaxel-induced testicular damage in rats. Andrologia 2015 47 3 248 256 10.1111/and.12253 24601972
    [Google Scholar]
  54. Khodabandeh Z. Dolati P. Zamiri M.J. Mehrabani D. Bordbar H. Alaee S. Jamhiri I. Azarpira N. Protective effect of quercetin on testis structure and apoptosis against lead acetate toxicity: An stereological study. Biol. Trace Elem. Res. 2021 199 9 3371 3381 10.1007/s12011‑020‑02454‑8 33107017
    [Google Scholar]
  55. Oyewopo A.O. Adeleke O. Johnson O. Akingbade A. Olaniyi K.S. Areola E.D. Tokunbo O. Regulatory effects of quercetin on testicular histopathology induced by cyanide in Wistar rats. Heliyon 2021 7 7 e07662 10.1016/j.heliyon.2021.e07662 34401560
    [Google Scholar]
  56. Mustafa H.N. Ameliorative potential of the quercetin on lead-induced testicular damage: Morphohistometric and biochemical analysis. Afr. J. Urol. 2023 29 1 36 10.1186/s12301‑023‑00369‑z
    [Google Scholar]
  57. Long X. Zeng X. Zhang F.Q. Wang X.J. Influence of quercetin and x-ray on collagen synthesis of cultured human keloid-derived fibroblasts. Chin. Med. Sci. J. 2006 21 3 179 183 17086741
    [Google Scholar]
  58. Stipcevic T. Piljac J. Berghe D.V. Effect of different flavonoids on collagen synthesis in human fibroblasts. Plant Foods Hum. Nutr. 2006 61 1 27 32 10.1007/s11130‑006‑0006‑8 16642409
    [Google Scholar]
/content/journals/aiaamc/10.2174/0118715230316410240821105658
Loading
/content/journals/aiaamc/10.2174/0118715230316410240821105658
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Alkylating agents ; chemotherapy ; gonadotoxicity ; subfertility ; flavonoids ; antioxidant
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test