Skip to content
2000
Volume 20, Issue 16
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background: Using imatinib, a tyrosine kinase inhibitor drug used in lymphoblastic leukemia, has always had limitations due to its cardiotoxicity and hepatotoxicity side effects. The objective of this study is to develop a target-oriented drug carrier to minimize these adverse effects by the controlled release of the drug. Methods: KIT-5 nanoparticles were functionalized with 3-aminopropyltriethoxysilane and conjugated to rituximab as the targeting agent for the CD20 positive receptors of the B-cells. Then they were loaded with imatinib and their physical properties were characterized. The cell cytotoxicity of the nanoparticles was studied by MTT assay in Ramos (CD20 positive) and Jurkat cell lines (CD20 negative) and their cellular uptake was shown by fluorescence microscope. Wistar rats received an intraperitoneal injection of 50 mg/kg of the free drug or targeted nanoparticles for 21 days. Then the level of aspartate Aminotransferase (AST), alanine Aminotransferase (ALT), Alkaline Phosphatase (ALP) and Lactate Dehydrogenase (LDH) were measured in serum of animals. The cardiotoxicity and hepatotoxicity of the drug were also studied by hematoxylin and eosin staining of the tissues. Results: The targeted nanoparticles of imatinib showed to be more cytotoxic to Ramos cells rather than Jurkat cells. The results of the biochemical analysis displayed a significant reduction in AST, ALT, ALP, and LDH levels in animals treated with targeted nanoparticles, compared to the free drug group. By comparison with the free imatinib, histopathological results represented less cardiotoxicity and hepatotoxicity in the animals, which received the drug through the current designed delivery system. Conclusion: The obtained results confirmed that the rituximab targeted KIT-5 nanoparticles are promising in the controlled release of imatinib and could decrease its cardiotoxicity and hepatotoxicity side effects.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/1871520620666200619174323
2020-11-01
2025-06-28
Loading full text...

Full text loading...

/content/journals/acamc/10.2174/1871520620666200619174323
Loading

  • Article Type:
    Research Article
Keyword(s): cardiotoxicity; hepatotoxicity; Imatinib; KIT-5; lymphoblastic leukemia; rituximab
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test