Skip to content
2000
Volume 20, Issue 7
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Indroduction: This article presents a theoretical analysis of the safe form and dosage of the amygdalin derivative. By making a precise socio-anthropological analysis of the life of the ancient people of Botra (Hunza people, Burusho/Brusho people), a hypothesis has been postulated through a number of modern quantum-mechanical, molecular-topological and bio analytical checks, and has also been confirmed by two proofs. Methods: The proposed hypothesis underwent theoretical and logical analysis to confirm and/or reject it. The methodological scheme was: determining the optimal chemical formula, determination of the pharmaceutical molecular form and determination of the drug dose. Results: A convenient, harmless, form of amygdalin derivative is available that has the same biological and chemical activity and could be used in conservative clinical oncology. The article also presents a theoretical comparative analysis of biochemical reactivity in in vivo and in vitro media, by which we also determine the recommended dosage for patient administration. A comparative analysis of the data, obtained in published clinical studies of amygdalin, is presented, summarizing a scheme of the anti-tumor activity of the proposed molecular form. Conclusion: The hydrolyzed to amide / carboxylic acid cyano / nitrile glycosides are potential drugs. Their biological activity remains unchanged, but their toxicity is many times lower than unmodified native molecules. We claim that this study we have conducted on amygdalin / dhurrin-derived amide is the only study on this molecular form. Other substances in these groups with pronounced biological activity (including anti-tumor) are the hydrolyzed nitrile groups by Prunasin, Lucumin, Vicianin, Sambunigrin, Dhurrin, Taxiphyllin, Zierin, Preteacin, p-Glucosyloxymandelonitrile, Linamarin, Lotaustralin, Acaciapetalin, Triglochinin, Dejdaclin, Tetraphyllin A, Tetrallin B, Gynocardin etc., to their amide/carboxylic acid.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/1871520620666200313163801
2020-05-01
2025-04-23
Loading full text...

Full text loading...

/content/journals/acamc/10.2174/1871520620666200313163801
Loading

  • Article Type:
    Research Article
Keyword(s): amygdalin; Oncology; pharmacological activity; PM6; PM7; TD-DFT
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test