Skip to content
2000
Volume 20, Issue 1
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background: Glioblastoma is the most common primary brain tumor in adults with a dismal prognosis. To date, several anticancer agents have been isolated from plants. Helleborus odorus subsp. Cyclophyllus is an endemic plant of the Balcan flora. Herewith, we investigated for the first time, the anti-glioma effect of deglucohellebrin (DGH) extracted from the roots of Helleborus. Methods: We investigated the effect of DGH in U251MG, T98G and U87G glioblastoma cell lines. We selected the T98G cells because of their inherent temozolomide resistance. Results: The IC50 value of reduced viability for DGH was 7x10-5M in U251MG cells, 5x10-5M for the T98G cells and 4x10-5M in U87G cells during 72h treatment. DGH induced G2/M cell cycle arrest, caspace-8 activation and significant mitochondrial membrane depolarization, suggesting the activation of the intrinsic, mitochondrial- dependent apoptotic pathway. DGH and temozolomide induced changes in CDs’ expression in U251MG and T98G cells. In zebrafish, DGH did not induce toxicity or behavioral alterations. Conclusion: The present study is the first to determine the anti-glioma activity of DGH. DGH may be a potent agent for glioblastoma treatment and further studies are needed.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/1871520619666191121110848
2020-01-01
2025-06-23
Loading full text...

Full text loading...

/content/journals/acamc/10.2174/1871520619666191121110848
Loading

  • Article Type:
    Research Article
Keyword(s): deglucohellebrin; G2/M cell cycle arrest; Glioblastoma; prognosis; treatment; zebrafish
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test