Skip to content
2000
Volume 20, Issue 2
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Objective: To assess the differential cytotoxic activity of PPIs on different human cancer cell lines; namely A549 lung cancer, CACO-2 colorectal cancer, MCF-7 breast cancer, and PANC-1 pancreatic cancer, A375 skin melanoma. Methods: In this study, the five human cancer cell lines and human non-cancerous fibroblasts were treated with increasing concentration of PPIs Omeprazole (OMP), Esomeprazole (ESOM), and Lansoprazole (LANSO) (50-300μM), over 24h, 48h, and 72h. Cell viability was determined using 3-(4,5- Dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay and the IC50 values of PPIs were measured. The most sensitive cell line A375 was used for further investigation. The cytotoxic effects of LANSO on these cells were assessed using Annexin-V Propidium Iodide (AV-PI) flow cytometry. As of action mechanism; anti-inflammatory effects of each PPIs and PPIs-DOXO combination therapy on LPS-stimulated RAW 264.7 mouse macrophages were assessed. Results: Dose and time dependence cytotoxic activity of PPIs on human cancer cell lines was founded. Unlike DOXO; All PPIs had a selective cytotoxic effect in the normal fibroblasts. Unlike the equipotent OMP and ESOM; LANSO was the most potent drug with IC50 values at 72h of 99, 217, 272, 208, 181μM against A375, A549, CACO-2, MCF-7, and PANC-1, respectively. AV-PI flow cytometry revealed dose-dependent apoptotic effects of LANSO alone and substantially enhanced in DOXO-co-treatments. Interestingly unlike ESOM and OMP, LANSO proved more effective than indomethacin in LPS-stimulated RAW 264.7 macrophages. None of the tested compounds, as well as indomethacin, exerted any cytotoxicity against RAW 264.7 macrophages. PPIs-DOXO lacked potential synergistic combination antiinflammation therapies. Conclusion: This study provides the evidence that PPIs induce a direct and differential cytotoxic activity against human cancer cell line by the induction of the apoptosis. Moreover, PPIs increase cancer cell lines sensitivity to doxorubicin via apoptosis augmentation. Nevertheless, PPIs-DOXO lacked potential synergistic combination therapies in either antiproliferation or anti-inflammation.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/1871520619666191029151545
2020-01-01
2025-07-03
Loading full text...

Full text loading...

/content/journals/acamc/10.2174/1871520619666191029151545
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test