Skip to content
2000
Volume 19, Issue 3
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background: Our previous study successfully identified that 3,3′-Dimethylquercetin (DMQ) acted as a potent anticancer agent against human colon cancer cell lines RKO. Thus, this study was conducted to investigate the underlying mechanism by which DMQ displayed inhibitory activity in RKO cells. Methods: Flow cytometry was used to evaluate the effect of DMQ on the cell cycle arrest, as well as the mitochondrial membrane potential in RKO cells. DAPI staining and DNA fragmentation ladder assays were performed to assess the apoptosis inducing activity of DMQ. Furthermore, western blot analysis was conducted to examine the expression of related proteins responsible for the cell cycle arrest and apoptosis. Results: Treatment with DMQ caused a significant increase in the fraction of G2/M cells, and induced remarkable apoptosis. Furthermore, western blot analysis showed that DMQ arrested cells at G2/M checkpoint by down-regulation of cyclin B1, cdc2 and cdc25c and up-regulation of p21, and induced cell apoptosis via affecting the ratio of Bax/Bcl-2, causing loss of the mitochondrial membrane potential and enhancing the expression of cleaved caspase-9 (C-caspase-9) and cleaved caspase-3 (C-caspase-3). Conclusion: These data showed that DMQ could suppress RKO cell growth by arresting RKO cells at G2/M checkpoint and inducing mitochondria-dependent cell apoptosis. Our findings shed light on the potential use of DMQ as a chemotherapeutic agent for CRC.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/1871520618666181106120718
2019-02-01
2025-04-22
Loading full text...

Full text loading...

/content/journals/acamc/10.2174/1871520618666181106120718
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test