Skip to content
2000
Volume 19, Issue 5
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background: One of the major goals of computational chemists is to determine and develop the pathways for anticancer drug discovery and development. In recent past, high performance computing systems elicited the desired results with little or no side effects. The aim of the current review is to evaluate the role of computational chemistry in ascertaining kinases as attractive targets for anticancer drug discovery and development. Methods: Research related to computational studies in the field of anticancer drug development is reviewed. Extensive literature on achievements of theorists in this regard has been compiled and presented with special emphasis on kinases being the attractive anticancer drug targets. Results: Different approaches to facilitate anticancer drug discovery include determination of actual targets, multi-targeted drug discovery, ligand-protein inverse docking, virtual screening of drug like compounds, formation of di-nuclear analogs of drugs, drug specific nano-carrier design, kinetic and trapping studies in drug design, multi-target QSAR (Quantitative Structure Activity Relationship) model, targeted co-delivery of anticancer drug and siRNA, formation of stable inclusion complex, determination of mechanism of drug resistance, and designing drug like libraries for the prediction of drug-like compounds. Protein kinases have gained enough popularity as attractive targets for anticancer drugs. These kinases are responsible for uncontrolled and deregulated differentiation, proliferation, and cell signaling of the malignant cells which result in cancer. Conclusion: Interest in developing drugs through computational methods is a growing trend, which saves equally the cost and time. Kinases are the most popular targets among the other for anticancer drugs which demand attention. 3D-QSAR modelling, molecular docking, and other computational approaches have not only identified the target-inhibitor binding interactions for better anticancer drug discovery but are also designing and predicting new inhibitors, which serve as lead for the synthetic preparation of drugs. In light of computational studies made so far in this field, the current review highlights the importance of kinases as attractive targets for anticancer drug discovery and development.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/1871520618666181009163014
2019-03-01
2025-04-09
Loading full text...

Full text loading...

/content/journals/acamc/10.2174/1871520618666181009163014
Loading

  • Article Type:
    Review Article
Keyword(s): anticancer; computational; docking; Kinase; malignant cells; QSAR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test