Skip to content
2000
Volume 14, Issue 8
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Cucurbitacin B (Cuc B) is a natural product with potent anti-cancer activities in solid tumors. We investigated the anti-cancer effect of Cuc B on K562 leukemia cells. Cuc B drastically decreased cell viability in a concentration-dependent manner. Cuc B treatment caused DNA damage, as shown by long tails in the comet assay and increased γH2AX protein expression. Immunofluorescence, Fluo3- AM, and JC-1 staining results showed that Cuc B treatment induced nuclear γH2AX foci, increased intracellular calcium ion concentration, and depolarized mitochondrial membrane potential (MMP), respectively. Cuc B induced G2/M phase arrest and apoptosis, as shown by flow cytometry, DNA fragmentation, and protein expression analyses. In addition, Cuc B dramatically increased intracellular reactive oxygen species (ROS) generation as measured by DCFH2-DA. N-acetyl-l-cysteine pretreatment significantly reversed Cuc B-induced DNA damage, increased intracellular calcium ion concentration, and reduced MMP, G2/M phase arrest, and apoptosis. Taken together, these results suggested that ROS mediated Cuc B-induced DNA damage, G2/M arrest, and apoptosis in K562 cells. This study provides novel mechanisms to better understand the underlying anti-cancer mechanisms of Cuc B.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/1871520614666140601220915
2014-10-01
2025-06-26
Loading full text...

Full text loading...

/content/journals/acamc/10.2174/1871520614666140601220915
Loading

  • Article Type:
    Research Article
Keyword(s): Apoptosis; cancer; cucurbitacin B; DNA damage; G2/M arrest; ROS
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test