Skip to content
2000
Volume 13, Issue 7
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

The PI3K/Akt signaling pathway mediates mitogen-dependent growth and survival in various types of cancer cells, and inhibition of this pathway results in tumor cell growth arrest and apoptosis. Tocotrienols are natural forms of vitamin E that displays potent anticancer activity at treatment doses that had little or no effect on normal cell viability. Mechanistic studies revealed that the anticancer effects of γ-tocotrienol were associated with a suppression in PI3K/Akt signaling. Additional studies showed that cytotoxic LD50 doses of γ-tocotrienol were 3-5-fold higher than growth inhibitory IC50 treatment doses, suggesting that cytotoxic and antiproliferative effects of γ-tocotrienol might be mediated through different mechanisms. However, γ-tocotrienol-induced caspase activation and apoptosis in mammary tumor cells was also found to be associated with suppression in intracellular PI3K/Akt signaling and subsequent down-regulation of FLIP, an endogenous inhibitor of caspase processing and activation. Since breast cancer cells are significantly more sensitive to the inhibitory effects of γ-tocotrienol on PI3K/Akt signaling than normal cells, these findings suggest that γ-tocotrienol may provide significant health benefits in reducing the risk of breast cancer in women. Studies have also shown that combined treatment of γ-tocotrienol with other chemotherapeutic agents can result in a synergistic anticancer response. Combination therapy was most effective when the anticancer mechanism of action of γ-tocotrienol is complimentary to that of the other drug and can provide significant health benefits in the prevention and/or treatment of breast cancer, while at the same time avoiding tumor resistance or toxic effects that is commonly associated with high dose monotherapy.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/18715206113139990116
2013-09-01
2025-06-22
Loading full text...

Full text loading...

/content/journals/acamc/10.2174/18715206113139990116
Loading

  • Article Type:
    Research Article
Keyword(s): Akt; breast cancer; PI3K; tocotrienols; Vitamin E
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test