Skip to content
2000
image of Redefining Anthraquinone-based Anticancer Drug Design through Subtle Chemical Modifications

Abstract

Anthraquinones are well known for their wide spectrum of pharmacological properties. Anthraquinone antibiotics, such as doxorubicin, daunorubicin, epirubicin, and mitoxantrone, have long been used in the clinical management of various tumors. However, their use is limited due to their toxicity effects, especially cardiomyopathy, despite their pronounced therapeutic effects. In recent years, medicinal chemists have explored the possibility of modifying the anthraquinone ring appended with structurally diverse functionality in order to develop better chemotherapeutic agents with fewer adverse effects. The fused polycyclic structure of anthraquinone offers rigidity, planarity, and aromaticity, which helps in double helix DNA intercalation, disruption of G4 DNA, and inhibition of topoisomerase-II enzyme of cancer cells, making them suitable pharmacophore for anticancer drug discovery. Incorporation of suitable functional groups such as amino, hydroxyl, and their derivatives into anthraquinone rings can improve their interactions with biological targets involved in cancer progression. These subtle structural changes produce newer anthraquinone derivatives with improved anticancer properties, increased potency, selectivity, and reduced toxicity, and can overcome multi-drug resistance. On the other hand, the molecular hybrids of the anthraquinone derivatives have been reported to act on multiple targets in cancer cells, as seen in the case of clinical candidates like alectinib, midostaurin, tucatinib, belinostat, and dacinostat. Molecular hybrid has given a new direction for anticancer drug development, which can produce bifunctional drug candidates with reduced toxicity. This review summarizes different structural modifications that have been made to the anthraquinone ring in the last decade with the aim of bringing out potent yet toxicity-free anticancer agents.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206374787250227064528
2025-03-03
2025-04-02
Loading full text...

Full text loading...

References

  1. Monks T.J. Hanzlik R.P. Cohen G.M. Ross D. Graham D.G. Quinone chemistry and toxicity. Toxicol. Appl. Pharmacol. 1992 112 1 2 16 10.1016/0041‑008X(92)90273‑U 1733045
    [Google Scholar]
  2. Malik E.M. Müller C.E. Anthraquinones as pharmacological tools and drugs. Med. Res. Rev. 2016 36 4 705 748 10.1002/med.21391 27111664
    [Google Scholar]
  3. Shakour Z.T. Farag M.A. Diverse host-associated fungal systems as a dynamic source of novel bioactive anthraquinones in drug discovery: Current status and future perspectives. J. Adv. Res. 2022 39 257 273 10.1016/j.jare.2021.11.007 35660073
    [Google Scholar]
  4. Wang P. Wei J. Hua X. Dong G. Dziedzic K. Wahab A. Efferth T. Sun W. Ma P. Plant anthraquinones: Classification, distribution, biosynthesis, and regulation. J. Cell. Physiol. 2023 ••• jcp.31063 10.1002/jcp.31063 37393608
    [Google Scholar]
  5. Diaz-Muñoz G. Miranda I.L. Sartori S.K. Rezende D.D.C. Diaz M.A.N. Anthraquinones: An overview. Stud. Nat. Prod. Chem. 2018 58 313 338 10.1016/B978‑0‑444‑64056‑7.00011‑8
    [Google Scholar]
  6. Dong M. Ming X. Xiang T. Feng N. Zhang M. Ye X. He Y. Zhou M. Wu Q. Recent research on the physicochemical properties and biological activities of quinones and their practical applications: A comprehensive review. Food Funct. 2024 15 18 8973 8997 10.1039/D4FO02600D 39189379
    [Google Scholar]
  7. Phan K. Raes K. Speybroeck V.V. Roosen M. Clerck D.K. Meester D.S. Non-food applications of natural dyes extracted from agro-food residues: A critical review. J. Clean. Prod. 2021 301 126920 10.1016/j.jclepro.2021.126920
    [Google Scholar]
  8. Chen C.X. Yang S.S. Pang J.W. He L. Zang Y.N. Ding L. Ren N.Q. Ding J. Anthraquinones-based photocatalysis: A comprehensive review. Environ. Sci. Ecotechnol. 2024 22 100449 10.1016/j.ese.2024.100449 39104553
    [Google Scholar]
  9. Cervantes-González J. Vosburg D.A. Mora-Rodriguez S.E. Vázquez M.A. Zepeda L.G. Gómez V.C. Lagunas-Rivera S. Anthraquinones: Versatile organic photocatalysts. ChemCatChem 2020 12 15 3811 3827 10.1002/cctc.202000376
    [Google Scholar]
  10. Malik M.S. Alsantali R.I. Jassas R.S. Alsimaree A.A. Syed R. Alsharif M.A. Kalpana K. Morad M. Althagafi I.I. Ahmed S.A. Journey of anthraquinones as anticancer agents – a systematic review of recent literature. RSC Advances 2021 11 57 35806 35827 10.1039/D1RA05686G 35492773
    [Google Scholar]
  11. Baqi Y. Anthraquinones as a privileged scaffold in drug discovery targeting nucleotide-binding proteins. Drug Discov. Today 2016 21 10 1571 1577 10.1016/j.drudis.2016.06.027 27373759
    [Google Scholar]
  12. Preet G. Gomez-Banderas J. Ebel R. Jaspars M. A structure-activity relationship analysis of anthraquinones with antifouling activity against marine biofilm-forming bacteria. Front. Nat. Prod. 2022 1 990822 10.3389/fntpr.2022.990822
    [Google Scholar]
  13. Roy S. Ali A. Kamra M. Muniyappa K. Bhattacharya S. Specific stabilization of promoter G-Quadruplex DNA by 2,6-disubstituted amidoanthracene-9,10-dione based dimeric distamycin analogues and their selective cancer cell cytotoxicity. Eur. J. Med. Chem. 2020 195 112202 10.1016/j.ejmech.2020.112202 32302880
    [Google Scholar]
  14. Qun T. Zhou T. Hao J. Wang C. Zhang K. Xu J. Wang X. Zhou W. Antibacterial activities of anthraquinones: Structure–activity relationships and action mechanisms. RSC Med. Chem. 2023 14 8 1446 1471 10.1039/D3MD00116D 37593578
    [Google Scholar]
  15. Zheng Y. Zhu L. Fan L. Zhao W. Wang J. Hao X. Zhu Y. Hu X. Yuan Y. Shao J. Wang W. Synthesis, SAR and pharmacological characterization of novel anthraquinone cation compounds as potential anticancer agents. Eur. J. Med. Chem. 2017 125 902 913 10.1016/j.ejmech.2016.10.012 27769031
    [Google Scholar]
  16. Tikhomirov A.S. Shtil A.A. Shchekotikhin A.E. Advances in the discovery of anthraquinone-based anticancer agents. Rec. Pat. Anti. Drug Discov. 2018 13 2 159 183 10.2174/1574892813666171206123114 29210664
    [Google Scholar]
  17. Phillips M. The chemistry of anthraquinone. Chem. Rev. 1929 6 1 157 174 10.1021/cr60021a007
    [Google Scholar]
  18. Diaz-Muñoz G. Miranda I.L. Sartori S.K. Rezende D.D.C. Diaz M.A.N. Anthraquinones: An overview. Studies in Natural Products Chemistry 2018 58 313 338 10.1016/B978‑0‑444‑64056‑7.00011‑8
    [Google Scholar]
  19. Fieser L.F. The discovery of synthetic alizarin. J. Chem. Educ. 1930 7 11 2609 10.1021/ed007p2609
    [Google Scholar]
  20. Fouillaud M. Caro Y. Venkatachalam M. Grondin I. Dufossé L. Anthraquinones. Phenolic Compounds in Food. Boca Raton, FL CRC Press 2018 131 172 10.1201/9781315120157‑9
    [Google Scholar]
  21. Siddamurthi S. Gutti G. Jana S. Kumar A. Singh S.K. Anthraquinone: A promising scaffold for the discovery and development of therapeutic agents in cancer therapy. Future Med. Chem. 2020 12 11 1037 1069 10.4155/fmc‑2019‑0198 32349522
    [Google Scholar]
  22. Volkova M. Russell R. III Anthracycline cardiotoxicity: Prevalence, pathogenesis and treatment. Curr. Cardiol. Rev. 2012 7 4 214 220 10.2174/157340311799960645 22758622
    [Google Scholar]
  23. Westendorf J Marquardt H Poginsky B Dominiak M Schmidt J Marquardt H Genotoxicity of naturally occurring hydroxyanthraquinones. Mutat. Res. Genet. Toxicol. 1990 240 1 1 2 10.1016/0165‑1218(90)90002‑j
    [Google Scholar]
  24. Cui X.R. Tsukada M. Suzuki N. Shimamura T. Gao L. Koyanagi J. Komada F. Saito S. Comparison of the cytotoxic activities of naturally occurring hydroxyanthraquinones and hydroxynaphthoquinones. Eur. J. Med. Chem. 2008 43 6 1206 1215 10.1016/j.ejmech.2007.08.009 17949858
    [Google Scholar]
  25. Cheemalamarri C. Batchu U.R. Thallamapuram N.P. Katragadda S.B. Shetty R.P. A review on hydroxy anthraquinones from bacteria: Crosstalk’s of structures and biological activities. Nat. Prod. Res. 2022 36 23 6186 6205 10.1080/14786419.2022.2039920 35175877
    [Google Scholar]
  26. Mielczarek-Puta M. Struga M. Roszkowski P. Synthesis and anticancer effects of conjugates of doxorubicin and unsaturated fatty acids (LNA and DHA). Med. Chem. Res. 2019 28 12 2153 2164 10.1007/s00044‑019‑02443‑0
    [Google Scholar]
  27. Zhang C. Jin S. Xue X. Zhang T. Jiang Y. Wang P.C. Liang X.J. Tunable self-assembly of Irinotecan-fatty acid prodrugs with increased cytotoxicity to cancer cells. J. Mater. Chem. B Mater. Biol. Med. 2016 4 19 3286 3291 10.1039/C6TB00612D 27239311
    [Google Scholar]
  28. Liang C. Ye W. Zhu C. Na R. Cheng Y. Cui H. Liu D. Yang Z. Zhou S. Synthesis of doxorubicin α-linolenic acid conjugate and evaluation of its antitumor activity. Mol. Pharm. 2014 11 5 1378 1390 10.1021/mp4004139 24720787
    [Google Scholar]
  29. Mishra B. Acharya P.C. De U.C. Synthesis and antineoplastic efficacy of anthraquinone and saturated fatty acid conjugates. ChemistrySelect 2023 8 25 e202301502 10.1002/slct.202301502
    [Google Scholar]
  30. Zhao L.M. Ma F.Y. Jin H.S. Zheng S. Zhong Q. Wang G. Design and synthesis of novel hydroxyanthraquinone nitrogen mustard derivatives as potential anticancer agents via a bioisostere approach. Eur. J. Med. Chem. 2015 102 303 309 10.1016/j.ejmech.2015.08.006 26291039
    [Google Scholar]
  31. Lin K.W. Lin W.H. Su C.L. Hsu H.Y. Lin C.N. Design, synthesis and antitumour evaluation of novel anthraquinone derivatives. Bioorg. Chem. 2021 107 104395 10.1016/j.bioorg.2020.104395 33384144
    [Google Scholar]
  32. Oliveira L.A. Nicolella H.D. Furtado R.A. Lima N.M. Tavares D.C. Corrêa T.A. Almeida M.V. Design, synthesis, and antitumor evaluation of novel anthraquinone derivatives. Med. Chem. Res. 2020 29 9 1611 1620 10.1007/s00044‑020‑02587‑4
    [Google Scholar]
  33. Morgan I. Wessjohann L.A. Kaluđerović G.N. In vitro anticancer screening and preliminary mechanistic study of A-ring substituted Anthraquinone derivatives. Cells 2022 11 1 168 10.3390/cells11010168 35011730
    [Google Scholar]
  34. Liu Y. Liang Y. Jiang J. Qin Q. Wang L. Liu X. Design, synthesis and biological evaluation of 1,4-dihydroxyanthraquinone derivatives as anticancer agents. Bioorg. Med. Chem. Lett. 2019 29 9 1120 1126 10.1016/j.bmcl.2019.02.026 30846253
    [Google Scholar]
  35. Li Y. Guo F. Chen T. Zhang L. Wang Z. Su Q. Feng L. Design, synthesis, molecular docking, and biological evaluation of new emodin anthraquinone derivatives as potential antitumor substances. Chem. Biodivers. 2020 17 9 e2000328 10.1002/cbdv.202000328 32627416
    [Google Scholar]
  36. Huang K. Jiang L. Liang R. Li H. Ruan X. Shan C. Ye D. Zhou L. Synthesis and biological evaluation of anthraquinone derivatives as allosteric phosphoglycerate mutase 1 inhibitors for cancer treatment. Eur. J. Med. Chem. 2019 168 45 57 10.1016/j.ejmech.2019.01.085 30798052
    [Google Scholar]
  37. Tikhomirov A.S. Sinkevich Y.B. Dezhenkova L.G. Kaluzhny D.N. Ilyinsky N.S. Borshchevskiy V.I. Schols D. Shchekotikhin A.E. Synthesis and antitumor activity of cyclopentane-fused anthraquinone derivatives. Eur. J. Med. Chem. 2024 265 116103 10.1016/j.ejmech.2023.116103 38176358
    [Google Scholar]
  38. Sirazhetdinova N.S. Savelyev V.A. Baev D.S. Golubeva T.S. Klimenko L.S. Tolstikova T.G. Ganbaatar J. Shults E.E. Synthesis, characterization and anticancer evaluation of nitrogen-substituted 1-(3-aminoprop-1-ynyl)-4-hydroxyanthraquinone derivatives. Med. Chem. Res. 2021 30 8 1541 1556 10.1007/s00044‑021‑02754‑1
    [Google Scholar]
  39. Hu X. Cao Y. Yin X. Zhu L. Chen Y. Wang W. Hu J. Design and synthesis of various quinizarin derivatives as potential anticancer agents in acute T lymphoblastic leukemia. Bioorg. Med. Chem. 2019 27 7 1362 1369 10.1016/j.bmc.2019.02.041 30827866
    [Google Scholar]
  40. Xie X.W. Liu Z.P. Li X. Design, synthesis, bioevaluation of LFC- and PA-tethered anthraquinone analogues of mitoxantrone. Bioorg. Chem. 2020 101 104005 10.1016/j.bioorg.2020.104005 32599362
    [Google Scholar]
  41. Tian W. Li J. Su Z. Lan F. Li Z. Liang D. Wang C. Li D. Hou H. Novel anthraquinone compounds induce cancer cell death through paraptosis. ACS Med. Chem. Lett. 2019 10 5 732 736 10.1021/acsmedchemlett.8b00624 31097991
    [Google Scholar]
  42. Li Y. Guo F. Chen T. Zhang L. Qin Y. Anthraquinone derivative C10 inhibits proliferation and cell cycle progression in colon cancer cells via the Jak2/Stat3 signaling pathway. Toxicol. Appl. Pharmacol. 2021 418 115481 10.1016/j.taap.2021.115481 33722666
    [Google Scholar]
  43. Katzhendler J. Gean K. Barad G. Tashma Z. Benshoshan R. Ringel I. Bachrach U. Ramu A. Synthesis of aminoanthraquinone derivatives and their in vitro evaluation as potential anti-cancer drugs. Eur. J. Med. Chem. 1989 24 1 23 30 10.1016/0223‑5234(89)90159‑1
    [Google Scholar]
  44. Huang H.S. Chiu H.F. Lu W.C. Yuan C.L. Synthesis and antitumor activity of 1,8-diaminoanthraquinone derivatives. Chem. Pharm. Bull. 2005 53 9 1136 1139 10.1248/cpb.53.1136 16141583
    [Google Scholar]
  45. Banerjee S. Roy S. Dharumadurai D. Perumalsamy B. Thirumurugan R. Das S. Chattopadhyay A.P. Guin P.S. A Co(III) Complex of 1-Amino-4-hydroxy-9,10-anthraquinone exhibits apoptotic action against MCF-7 human breast cancer cells. ACS Omega 2022 7 1 1428 1436 10.1021/acsomega.1c06125 35036804
    [Google Scholar]
  46. Roy S. Muniyappa K. Bhattacharya S. Deciphering the binding insights of novel disubstituted anthraquinone derivatives with G‐quadruplex DNA to exhibit selective cancer cell cytotoxicity. Chem. Med. Chem. 2022 17 22 e202200436 10.1002/cmdc.202200436 36161519
    [Google Scholar]
  47. Acharya P.C. Debbarma S. Targeting G-quadruplex DNA for cancer chemotherapy. Curr. Drug Discov. Technol. 2022 19 3 e140222201110 10.2174/1570163819666220214115408 35156574
    [Google Scholar]
  48. Sangthong S. Ha H. Teerawattananon T. Ngamrojanavanich N. Neamati N. Muangsin N. Overcoming doxorubicin-resistance in the NCI/ADR-RES model cancer cell line by novel anthracene-9,10-dione derivatives. Bioorg. Med. Chem. Lett. 2013 23 22 6156 6160 10.1016/j.bmcl.2013.09.004 24095089
    [Google Scholar]
  49. Tu H.Y. Huang A.M. Teng C.H. Hour T.C. Yang S.C. Pu Y.S. Lin C.N. Anthraquinone derivatives induce G2/M cell cycle arrest and apoptosis in NTUB1 cells. Bioorg. Med. Chem. 2011 19 18 5670 5678 10.1016/j.bmc.2011.07.021 21852140
    [Google Scholar]
  50. Shchekotikhin A.E. Glazunova V.A. Dezhenkova L.G. Shevtsova E.K. Traven’ V.F. Balzarini J. Huang H.S. Shtil A.A. Preobrazhenskaya M.N. The first series of 4,11-bis[(2-aminoethyl)amino]anthra[2,3-b]furan-5,10-diones: Synthesis and anti-proliferative characteristics. Eur. J. Med. Chem. 2011 46 1 423 428 10.1016/j.ejmech.2010.11.017 21144624
    [Google Scholar]
  51. Lee C.C. Huang K.F. Lin P.Y. Huang F.C. Chen C.L. Chen T.C. Guh J.H. Lin J.J. Huang H.S. Synthesis, antiproliferative activities and telomerase inhibition evaluation of novel asymmetrical 1,2-disubstituted amidoanthraquinone derivatives. Eur. J. Med. Chem. 2012 47 1 323 336 10.1016/j.ejmech.2011.10.059 22100139
    [Google Scholar]
  52. Taher A.T. Hegazy G.H. Synthesis of novel bis-anthraquinone derivatives and their biological evaluation as antitumor agents. Arch. Pharm. Res. 2013 36 5 573 578 10.1007/s12272‑013‑0074‑x 23471561
    [Google Scholar]
  53. Lee Y.R. Chen T.C. Lee C.C. Chen C.L. Ali A.A.A. Tikhomirov A. Guh J.H. Yu D.S. Huang H.S. Ring fusion strategy for synthesis and lead optimization of sulfur-substituted anthra[1,2-c][1,2,5]thiadiazole-6,11-dione derivatives as promising scaffold of antitumor agents. Eur. J. Med. Chem. 2015 102 661 676 10.1016/j.ejmech.2015.07.052 26344783
    [Google Scholar]
  54. Mohamadzadeh M. Zarei M. Anticancer activity and evaluation of apoptotic genes expression of 2-azetidinones containing anthraquinone moiety. Mol. Divers. 2021 25 4 2429 2439 10.1007/s11030‑020‑10142‑x 32944866
    [Google Scholar]
  55. Niedziałkowski P. Czaczyk E. Jarosz J. Wcisło A. Białobrzeska W. Wietrzyk J. Ossowski T. Synthesis and electrochemical, spectral, and biological evaluation of novel 9,10-anthraquinone derivatives containing piperidine unit as potent antiproliferative agents. J. Mol. Struct. 2019 1175 488 495 10.1016/j.molstruc.2018.07.070
    [Google Scholar]
  56. Arrousse N. Harras M.F. Kadiri E.S. Haldhar R. Ichou H. Bousta D. Grafov A. Rais Z. Taleb M. New anthraquinone drugs and their anticancer activities: Cytotoxicity, DFT, docking and ADMET properties. Results Chem. 2023 6 100996 10.1016/j.rechem.2023.100996
    [Google Scholar]
  57. Volodina Y.L. Tikhomirov A.S. Dezhenkova L.G. Ramonova A.A. Kononova A.V. Andreeva D.V. Kaluzhny D.N. Schols D. Moisenovich M.M. Shchekotikhin A.E. Shtil A.A. Thiophene-2-carboxamide derivatives of anthraquinone: A new potent antitumor chemotype. Eur. J. Med. Chem. 2021 221 113521 10.1016/j.ejmech.2021.113521 34082225
    [Google Scholar]
  58. Lin S. Zhang Y. Wang Z. Zhang S. Li Y. Fan Y. Li D. Li S. Bai Y. Preparation of novel anthraquinone-based aspirin derivatives with anti-cancer activity. Eur. J. Pharmacol. 2021 900 174020 10.1016/j.ejphar.2021.174020 33741381
    [Google Scholar]
  59. Singh M. Malhotra L. Haque M.A. Kumar M. Tikhomirov A. Litvinova V. Korolev A.M. Ethayathulla A.S. Das U. Shchekotikhin A.E. Kaur P. Heteroarene-fused anthraquinone derivatives as potential modulators for human aurora kinase B. Biochimie 2021 182 152 165 10.1016/j.biochi.2020.12.024 33417980
    [Google Scholar]
  60. Chen T.C. Guh J.H. Hsu H.W. Chen C.L. Lee C.C. Wu C.L. Lee Y.R. Lin J.J. Yu D.S. Huang H.S. Synthesis and biological evaluation of anthra[1,9-cd]pyrazol-6(2H)-one scaffold derivatives as potential anticancer agents. Arab. J. Chem. 2019 12 8 2864 2881 10.1016/j.arabjc.2015.06.017
    [Google Scholar]
  61. Tikhomirov A.S. Tsvetkov V.B. Volodina Y.L. Litvinova V.A. Andreeva D.V. Dezhenkova L.G. Kaluzhny D.N. Treshalin I.D. Shtil A.A. Shchekotikhin A.E. Heterocyclic ring expansion yields anthraquinone derivatives potent against multidrug resistant tumor cells. Bioorg. Chem. 2022 127 105925 10.1016/j.bioorg.2022.105925 35728293
    [Google Scholar]
  62. Claudio Viegas-Junior Danuello A. da Silva Bolzani V. Barreiro E.J. Fraga C.A. Molecular hybridization: A useful tool in the design of new drug prototypes. Curr. Med. Chem. 2007 14 17 1829 1852 10.2174/092986707781058805 17627520
    [Google Scholar]
  63. Bérubé G. An overview of molecular hybrids in drug discovery. Expert Opin. Drug Discov. 2016 11 3 281 305 10.1517/17460441.2016.1135125 26727036
    [Google Scholar]
  64. Shalini K.V. Kumar V. Have molecular hybrids delivered effective anti-cancer treatments and what should future drug discovery focus on? Expert Opin. Drug Discov. 2021 16 4 335 363 10.1080/17460441.2021.1850686 33305635
    [Google Scholar]
  65. Liu G.H. Chen T. Zhang X. Ma X.L. Shi H.S. Small molecule inhibitors targeting the cancers. MedComm 2022 3 4 e181 10.1002/mco2.181 36254250
    [Google Scholar]
  66. Decker M. In Design of hybrid molecules for drug development. Amsterdam, Netherlands Elsevier 2017 1 338
    [Google Scholar]
  67. Soltan O.M. Shoman M.E. Abdel-Aziz S.A. Narumi A. Konno H. Abdel-Aziz M. Molecular hybrids: A five-year survey on structures of multiple targeted hybrids of protein kinase inhibitors for cancer therapy. Eur. J. Med. Chem. 2021 225 113768 10.1016/j.ejmech.2021.113768 34450497
    [Google Scholar]
  68. Fujii H. Twin and triplet drugs in opioid research. Chemistry of Opioids. Cham Springer 2011 239 275
    [Google Scholar]
  69. Morphy R. Rankovic Z. Multi-target drugs: Strategies and challenges for medicinal chemists. The Practice of Medicinal Chemistry. Amsterdam, Netherlands Elsevier 2008 549 571 10.1016/B978‑0‑12‑374194‑3.00027‑5
    [Google Scholar]
  70. Sflakidou E. Leonidis G. Foroglou E. Siokatas C. Sarli V. Recent advances in natural product-based hybrids as anti-cancer agents. Molecules 2022 27 19 6632 10.3390/molecules27196632 36235168
    [Google Scholar]
  71. Dechy-Cabaret O. Benoit-Vical F. Robert A. Meunier B. Preparation and antimalarial activities of “trioxaquines”, new modular molecules with a trioxane skeleton linked to a 4-aminoquinoline. Chem. Bio. Chem. 2000 1 4 281 283 10.1002/1439‑7633(20001117)1:4<281::AID‑CBIC281>3.0.CO;2‑W 11828420
    [Google Scholar]
  72. Almutairi M. Hegazy G. Haiba M. Ali H. Khalifa N. Soliman A. Synthesis, docking and biological activities of novel hybrids celecoxib and anthraquinone analogs as potent cytotoxic agents. Int. J. Mol. Sci. 2014 15 12 22580 22603 10.3390/ijms151222580 25490139
    [Google Scholar]
  73. Marković V. Debeljak N. Stanojković T. Kolundžija B. Sladić D. Vujčić M. Janović B. Tanić N. Perović M. Tešić V. Antić J. Joksović M.D. Anthraquinone–chalcone hybrids: Synthesis, preliminary antiproliferative evaluation and DNA-interaction studies. Eur. J. Med. Chem. 2015 89 401 410 10.1016/j.ejmech.2014.10.055 25462255
    [Google Scholar]
  74. Riccardis D.F. Izzo I. Filippo D.M. Sodano G. D’Acquisto F. Carnuccio R. Synthesis and cytotoxic activity of steroid-anthraquinone hybrids. Tetrahedron 1997 53 31 10871 10882 10.1016/S0040‑4020(97)00693‑5
    [Google Scholar]
  75. Liang D. Su Z. Tian W. Li J. Li Z. Wang C. Li D. Hou H. Synthesis and screening of novel anthraquinone-quinazoline multitarget hybrids as promising anticancer candidates. Future Med. Chem. 2020 12 2 111 126 10.4155/fmc‑2019‑0230 31718309
    [Google Scholar]
  76. Arba M. Ihsan S. Ramadhan L.O.A.N. Tjahjono D.H. In silico study of porphyrin-anthraquinone hybrids as CDK2 inhibitor. Comput. Biol. Chem. 2017 67 9 14 10.1016/j.compbiolchem.2016.12.005 28024230
    [Google Scholar]
  77. Long X. Yang P. Chen L. Zhong W. Chen S. Li Y. Lin S. Tian W. Novel aloe emodin–hydroxyethyl piperazine hybrid dihydrochloride induces oral cancer CAL-27 cells apoptosis through ROS production, DNA damage and mitochondrial pathways. Med. Chem. Res. 2023 32 12 2549 2561 10.1007/s00044‑023‑03157‑0
    [Google Scholar]
  78. Bansal R. Acharya P.C. Man-made cytotoxic steroids: Exemplary agents for cancer therapy. Chem. Rev. 2014 114 14 6986 7005 10.1021/cr4002935 24869712
    [Google Scholar]
  79. van der Zanden S.Y. Qiao X. Neefjes J. New insights into the activities and toxicities of the old anticancer drug doxorubicin. FEBS J. 2021 288 21 6095 6111 10.1111/febs.15583 33022843
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206374787250227064528
Loading
/content/journals/acamc/10.2174/0118715206374787250227064528
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test