Skip to content
2000
image of Molecular Dynamics (MD) Simulation of GPR87-LPA Binding: Therapeutic Implications for Targeted Cancer Treatment

Abstract

Background

GPR87 is an orphan G-protein-coupled receptor (GPCR) that represents a potential molecular target for developing novel drugs aimed at treating squamous cell carcinomas (SCCs) or adenocarcinomas of the lungs and bladder.

Objectives

The present study aims to identify potential LPA analogues as inhibitors of the GPR87 protein through computational screening. To achieve this, the human GPR87 structure was modeled using template-based tools (Phyre2 and SWISS-MODEL), iterative threading (I-TASSER), and neural network-based de novo prediction (AlphaFold2). The modeled structures were then validated by assessing their quality against template structures using Verify-3D, ProSA, and ERRAT servers.

Methods

We conducted a comprehensive structural and functional analysis of the target protein using various computational tools. Several computational techniques were employed to explore the structural and functional characteristics of the target, with LPA selected as the initial pharmacological candidate. A library of 2,605 LPA analogues was screened against orphan GPR87 through in-silico docking analysis to identify higher-affinity and more selective potential drugs.

Results

Molecular dynamics (MD) simulations were performed to track structural changes and convergence during the simulations. Key metrics, including the root mean square fluctuation (RMSF) of Cα-atoms, radius of gyration, and RMSD of backbone atoms, were calculated for both the apo-form and the LPA-GPR87 complex structures. These studies on structure-based drug targeting could pave the way for the development of specific inhibitors for the treatment of squamous cell carcinomas.

Conclusion

These findings may contribute to the design and development of new therapeutic compounds targeting GPR87 for the treatment of SCC.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206374428250403103159
2025-04-09
2025-06-11
The full text of this item is not currently available.

References

  1. Civelli O. GPCR deorphanizations: The novel, the known and the unexpected transmitters. Trends Pharmacol. Sci. 2005 26 1 15 19 10.1016/j.tips.2004.11.005 15629200
    [Google Scholar]
  2. Costanzi S. Homology modeling of class a G protein-coupled receptors. Methods Mol. Biol. 2011 857 259 279 10.1007/978‑1‑61779‑588‑6_11 22323225
    [Google Scholar]
  3. Bräuner-Osborne H. Wellendorph P. Jensen A. Structure, pharmacology and therapeutic prospects of family C G-protein coupled receptors. Curr. Drug Targets 2007 8 1 169 184 10.2174/138945007779315614 17266540
    [Google Scholar]
  4. Dorsam R.T. Gutkind J.S. G-protein-coupled receptors and cancer. Nat. Rev. Cancer 2007 7 2 79 94 10.1038/nrc2069 17251915
    [Google Scholar]
  5. Shore D.M. Reggio P.H. The therapeutic potential of orphan GPCRs, GPR35 and GPR55. Front. Pharmacol. 2015 6 69 10.3389/fphar.2015.00069 25926795
    [Google Scholar]
  6. Tabata K. Baba K. Shiraishi A. Ito M. Fujita N. The orphan GPCR GPR87 was deorphanized and shown to be a lysophosphatidic acid receptor. Biochem. Biophys. Res. Commun. 2007 363 3 861 866 10.1016/j.bbrc.2007.09.063 17905198
    [Google Scholar]
  7. Chung S Funakoshi T Civelli O. Orphan GPCR research. Br J. Pharmacol 2008 153 S339 S346 10.1038/sj.bjp.0707606
    [Google Scholar]
  8. Audet M. Bouvier M. Restructuring G-protein- coupled receptor activation. Cell 2012 151 1 14 23 10.1016/j.cell.2012.09.003 23021212
    [Google Scholar]
  9. Sadiq S.K. Guixa-Gonzalez R. Dainese E. Pastor M. De Fabritiis G. Selent J. Molecular modeling and simulation of membrane lipid-mediated effects on GPCRs. Curr. Med. Chem. 2012 20 1 22 38 10.2174/0929867311320010004 23151000
    [Google Scholar]
  10. Nonaka Y. Hiramoto T. Fujita N. Identification of endogenous surrogate ligands for human P2Y12 receptors by in silico and in vitro methods. Biochem. Biophys. Res. Commun. 2005 337 1 281 288 10.1016/j.bbrc.2005.09.052 16185654
    [Google Scholar]
  11. Wittenberger T. Schaller H.C. Hellebrand S. An expressed sequence tag (EST) data mining strategy succeeding in the discovery of new G-protein coupled receptors11Edited by J. Thornton. J. Mol. Biol. 2001 307 3 799 813 10.1006/jmbi.2001.4520 11273702
    [Google Scholar]
  12. Singh R.K. Key Heterocyclic Cores for Smart Anticancer Drug–Design Part I. Bentham Science Publishers 2022 10.2174/97898150400741220101
    [Google Scholar]
  13. Gugger M. White R. Song S. Waser B. Cescato R. Rivière P. Reubi J.C. GPR87 is an overexpressed G-protein coupled receptor in squamous cell carcinoma of the lung. Dis. Markers 2008 24 1 41 50 10.1155/2008/857474 18057535
    [Google Scholar]
  14. Zhang Y Qian Y Lu W Chen X. The G protein-coupled receptor 87 is necessary for p53-dependent cell survival in response to genotoxic stress. Cancer Res. 2009 69 15 6049 10.1158/0008‑5472.CAN‑09‑0621
    [Google Scholar]
  15. Yan M Li H Zhu M Zhao F Zhang L Chen T G Protein-Coupled Receptor 87 (GPR87) promotes the growth and metastasis of CD133+ cancer stem-like cells in hepatocellular carcinoma. PLoS ONE 2013 8 4 e61056
    [Google Scholar]
  16. Kerley-Hamilton J.S. Pike A.M. Li N. DiRenzo J. Spinella M.J. A p53-dominant transcriptional response to cisplatin in testicular germ cell tumor-derived human embyronal carcinoma. Oncogene 2005 24 40 6090 6100 10.1038/sj.onc.1208755 15940259
    [Google Scholar]
  17. Andradas C. Caffarel M.M. Pérez-Gómez E. Salazar M. Lorente M. Velasco G. Guzmán M. Sánchez C. The orphan G protein-coupled receptor GPR55 promotes cancer cell proliferation via ERK. Oncogene 2011 30 2 245 252 10.1038/onc.2010.402 20818416
    [Google Scholar]
  18. Sud N. Sharma R. Ray R. Chattopadhyay T.K. Ralhan R. Differential expression of G-protein coupled receptor 56 in human esophageal squamous cell carcinoma. Cancer Lett. 2006 233 2 265 270 10.1016/j.canlet.2005.03.018 15916848
    [Google Scholar]
  19. Cui X. Shi E. Li J. Li Y. Qiao Z. Wang Z. Liu M. Tang W. Sun Y. Zhang Y. Xie Y. Zhen J. Wang X. Yi F. GPR87 promotes renal tubulointerstitial fibrosis by accelerating glycolysis and mitochondrial injury. Free Radic. Biol. Med. 2022 189 58 70 10.1016/j.freeradbiomed.2022.07.004 35843477
    [Google Scholar]
  20. Ochiai S. Furuta D. Sugita K. Taniura H. Fujita N. GPR87 mediates lysophosphatidic acid-induced colony dispersal in A431 cells. Eur. J. Pharmacol. 2013 715 1-3 15 20 10.1016/j.ejphar.2013.06.029 23831392
    [Google Scholar]
  21. Altschul S.F. Gish W. Miller W. Myers E.W. Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990 215 3 403 410 10.1016/S0022‑2836(05)80360‑2 2231712
    [Google Scholar]
  22. Li B. Han S. Wang M. Yu Y. Ma L. Chu X. Tan Q. Zhao Q. Wu B. Structural insights into signal transduction of the purinergic receptors P2Y1R and P2Y12R. Protein Cell 2022 14 5 pwac025 10.1093/procel/pwac025 37155313
    [Google Scholar]
  23. Larkin M.A. Blackshields G. Brown N.P. Chenna R. McGettigan P.A. McWilliam H. Valentin F. Wallace I.M. Wilm A. Lopez R. Thompson J.D. Gibson T.J. Higgins D.G. Clustal W and Clustal X version 2.0. Bioinformatics 2007 23 21 2947 2948 10.1093/bioinformatics/btm404 17846036
    [Google Scholar]
  24. Martí-Renom M.A. Stuart A.C. Fiser A. Sánchez R. Melo F. Šali A. Comparative protein structure modeling of genes and genomes. Annu. Rev. Biophys. Biomol. Struct. 2000 29 1 291 325 10.1146/annurev.biophys.29.1.291 10940251
    [Google Scholar]
  25. Accelrys Software Inc Cerius2 Modeling Environment, Release 4.7. San Diego Accelrys Software Inc. 2003
    [Google Scholar]
  26. Yang J. Zhang Y. I-TASSER server: New development for protein structure and function predictions. Nucleic Acids Res. 2015 43 W1 W174 W181 10.1093/nar/gkv342 25883148
    [Google Scholar]
  27. Kelley L.A. Mezulis S. Yates C.M. Wass M.N. Sternberg M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015 10 6 845 858 10.1038/nprot.2015.053 25950237
    [Google Scholar]
  28. Waterhouse A. Bertoni M. Bienert S. Studer G. Tauriello G. Gumienny R. Heer F.T. de Beer T.A.P. Rempfer C. Bordoli L. Lepore R. Schwede T. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018 46 W1 W296 W303 10.1093/nar/gky427 29788355
    [Google Scholar]
  29. Jumper J. Evans R. Pritzel A. Green T. Figurnov M. Ronneberger O. Tunyasuvunakool K. Bates R. Žídek A. Potapenko A. Bridgland A. Meyer C. Kohl S.A.A. Ballard A.J. Cowie A. Romera-Paredes B. Nikolov S. Jain R. Adler J. Back T. Petersen S. Reiman D. Clancy E. Zielinski M. Steinegger M. Pacholska M. Berghammer T. Bodenstein S. Silver D. Vinyals O. Senior A.W. Kavukcuoglu K. Kohli P. Hassabis D. Highly accurate protein structure prediction with AlphaFold. Nature 2021 596 7873 583 589 10.1038/s41586‑021‑03819‑2 34265844
    [Google Scholar]
  30. De Lano W.L. The PyMOL molecular graphics system. 2002 40 1 82 92 Available from: http://www.pymol.org
  31. Laskowski R.A. MacArthur M.W. Moss D.S. Thornton J.M. PROCHECK: A program to check the stereochemical quality of protein structures. J. Appl. Cryst. 1993 26 2 283 291 10.1107/S0021889892009944
    [Google Scholar]
  32. Colovos C. Yeates T.O. Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Sci. 1993 2 9 1511 1519 10.1002/pro.5560020916 8401235
    [Google Scholar]
  33. Bowie J.U. Lüthy R. Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science 1991 253 5016 164 170 10.1126/science.1853201 1853201
    [Google Scholar]
  34. Wiederstein M Sippl MJ ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 2007 35 W407 10.1093/nar/gkm290
    [Google Scholar]
  35. Shen M. Sali A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006 15 11 2507 2524 10.1110/ps.062416606 17075131
    [Google Scholar]
  36. Bryson K McGuffin L.J. Marsden R.L. Ward J.J. Sodhi J.S. Jones D.T. Protein structure prediction servers at University College London Nucleic Acid. Research 2005 33 2 W36 W38 10.1093/nar/gki410
    [Google Scholar]
  37. Cserzö M. Wallin E. Simon I. von Heijne G. Elofsson A. Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: The dense alignment surface method. Protein Eng. Des. Sel. 1997 10 6 673 676 10.1093/protein/10.6.673 9278280
    [Google Scholar]
  38. Krogh A. Larsson B. von Heijne G. Sonnhammer E.L.L. Predicting transmembrane protein topology with a hidden markov model: Application to complete genomes11Edited by F. Cohen. J. Mol. Biol. 2001 305 3 567 580 10.1006/jmbi.2000.4315 11152613
    [Google Scholar]
  39. Tusnády G.E. Simon I. Principles governing amino acid composition of integral membrane proteins: Application to topology prediction 1 1Edited by J. Thornton. J. Mol. Biol. 1998 283 2 489 506 10.1006/jmbi.1998.2107 9769220
    [Google Scholar]
  40. Hofmann K. Stoffel W. TMbase: A database of membrane spanning proteins segments. Biol. Chem. Hoppe Seyler 1993 374 166 170
    [Google Scholar]
  41. Claros M.G. Heijne G. TopPred II: An improved software for membrane protein structure predictions. Bioinformatics 1994 10 6 685 686 10.1093/bioinformatics/10.6.685 7704669
    [Google Scholar]
  42. Hirokawa T. Boon-Chieng S. Mitaku S. SOSUI: Classification and secondary structure prediction system for membrane proteins. Bioinformatics 1998 14 4 378 379 10.1093/bioinformatics/14.4.378 9632836
    [Google Scholar]
  43. Juretić D. Zoranić L. Zucić D. Basic charge clusters and predictions of membrane protein topology. J. Chem. Inf. Comput. Sci. 2002 42 3 620 632 10.1021/ci010263s 12086524
    [Google Scholar]
  44. Rost B. Yachdav G. Liu J. The predict protein server. Nucleic Acid. Research 2004 32 2 W321 10.1093/nar/gkh377
    [Google Scholar]
  45. Jones D.T. Taylor W.R. Thornton J.M. A model recognition approach to the prediction of all-helical membrane protein structure and topology. Biochemistry 1994 33 10 3038 3049 10.1021/bi00176a037 8130217
    [Google Scholar]
  46. Bagos P.G. Liakopoulos T.D. Hamodrakas S.J. Algorithms for incorporating prior topological information in HMMs: Application to transmembrane proteins. BMC Bioinformatics 2006 7 1 189 10.1186/1471‑2105‑7‑189 16597327
    [Google Scholar]
  47. Schultz J. Milpetz F. Bork P. Ponting C.P. SMART, a simple modular architecture research tool: Identification of signaling domains. Proc. Natl. Acad. Sci. USA 1998 95 11 5857 5864 10.1073/pnas.95.11.5857 9600884
    [Google Scholar]
  48. Reynolds S.M. Käll L. Riffle M.E. Bilmes J.A. Noble W.S. Transmembrane topology and signal peptide prediction using dynamic bayesian networks. PLOS Comput. Biol. 2008 4 11 e1000213 10.1371/journal.pcbi.1000213 18989393
    [Google Scholar]
  49. Gallwitz B. Witt M. Paetzold G. Morys-Wortmann C. Zimmermann B. Eckart K. Fölsch U.R. Schmidt W.E. Structure/activity characterization of glucagon-like peptide-1. Eur. J. Biochem. 1994 225 3 1151 1156 10.1111/j.1432‑1033.1994.1151b.x 7957206
    [Google Scholar]
  50. Zhang Z. Li Y. Lin B. Schroeder M. Huang B. Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics 2011 27 15 2083 2088 10.1093/bioinformatics/btr331 21636590
    [Google Scholar]
  51. Huang B. Schroeder M. LIGSITEcsc: Predicting ligand binding sites using the Connolly surface and degree of conservation. BMC Struct. Biol. 2006 6 1 19 10.1186/1472‑6807‑6‑19 16995956
    [Google Scholar]
  52. Brady G.P. Jr Stouten P.F.W. Fast prediction and visualization of protein binding pockets with PASS. J. Comput. Aided Mol. Des. 2000 14 4 383 401 10.1023/A:1008124202956 10815774
    [Google Scholar]
  53. Laurie A.T.R. Jackson R.M. Q-SiteFinder: An energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 2005 21 9 1908 1916 10.1093/bioinformatics/bti315 15701681
    [Google Scholar]
  54. Laskowski RA SURFNET: A program for visualizing molecular surfaces, cavities, and intermolecular interactions. J. Mol Graph. 1995 13 5 323 10.1016/0263‑7855(95)00073‑9
    [Google Scholar]
  55. Dundas J Ouyang Z. Tseng J Binkowski A Turpaz Y Liang J CASTp: Computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues Nucleic. Acid. Res. 2006 34 2 W116 10.1093/nar/gkl282
    [Google Scholar]
  56. Rani M. Nischal A. Sahoo G.C. Khattri S. Computational analysis of the 3-D structure of human GPR87 protein: Implications for structure-based drug design. Asian Pac. J. Cancer Prev. 2013 14 12 7473 7482 10.7314/APJCP.2013.14.12.7473 24460321
    [Google Scholar]
  57. Van Der Spoel D. Lindahl E. Hess B. Groenhof G. Mark A.E. Berendsen H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005 26 16 1701 1718 10.1002/jcc.20291 16211538
    [Google Scholar]
  58. Berendsen H.J.C. Grigera J.R. Straatsma T.P. The missing term in effective pair potentials. J. Phys. Chem. 1987 91 24 6269 6271 10.1021/j100308a038
    [Google Scholar]
  59. Humphrey W Dalke A Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996 14 1 33 38 10.1016/0263‑7855(96)00018‑5
    [Google Scholar]
  60. Xu Y. Shen Z. Wiper D.W. Wu M. Morton R.E. Elson P. Kennedy A.W. Belinson J. Markman M. Casey G. Lysophosphatidic acid as a potential biomarker for ovarian and other gynecologic cancers. JAMA 1998 280 8 719 723 10.1001/jama.280.8.719 9728644
    [Google Scholar]
  61. Abu-Dief A.M. El-Khatib R.M. El-Dabea T. Abdou A. Aljohani F.S. Al-Farraj E.S. Barnawi I.O. El-Remaily M.A.E.A.A.A. Fabrication, structural elucidation of some new metal chelates based on N-(1H-Benzoimidazol-2-yl)-guanidine ligand: DNA interaction, pharmaceutical studies and molecular docking approach. J. Mol. Liq. 2023 386 122353 10.1016/j.molliq.2023.122353
    [Google Scholar]
  62. Rarey M. Kramer B. Lengauer T. Klebe G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol. 1996 261 3 470 489 10.1006/jmbi.1996.0477 8780787
    [Google Scholar]
  63. Rarey M. Kramer B. Lengauer T. The particle concept: Placing discrete water molecules during protein-ligand docking predictions. Proteins 1999 34 1 17 28 10.1002/(SICI)1097‑0134(19990101)34:1<17::AID‑PROT3>3.0.CO;2‑1 10336380
    [Google Scholar]
  64. Böhm H.J. The computer program LUDI: A new method for the de novo design of enzyme inhibitors. J. Comput. Aided Mol. Des. 1992 6 1 61 78 10.1007/BF00124387 1583540
    [Google Scholar]
  65. Rani M. Dikhit M.R. Sahoo G.C. Das P. Comparative domain modeling of human EGF-like module EMR2 and study of interaction of the fourth domain of EGF with chondroitin 4-sulphate. J. Biomed. Res. 2011 25 2 100 110 10.1016/S1674‑8301(11)60013‑4 23554678
    [Google Scholar]
  66. Sahoo G.C. Dikhit M.R. Rani M. Ansari M.Y. Jha C. Rana S. Das P. Analysis of sequence, structure of GAPDH of Leishmania donovani and its interactions. J. Biomol. Struct. Dyn. 2013 31 3 258 275 10.1080/07391102.2012.698189 22830998
    [Google Scholar]
  67. Rani M. Sharma A.K. Chouhan R.S. Sur S. Mansuri R. Singh R.K. Natural flavonoid pectolinarin computationally targeted as a promising drug candidate against SARS-CoV-2. Curr. Res. Struct. Biol. 2024 7 100120 10.1016/j.crstbi.2023.100120 38205118
    [Google Scholar]
  68. Téletchéa S. Esque J. Urbain A. Etchebest C. de Brevern A.G. Evaluation of transmembrane protein structural models using HPMScore. BioMedInformatics 2023 3 2 306 326 10.3390/biomedinformatics3020021
    [Google Scholar]
  69. Wall M.A. Coleman D.E. Lee E. Iñiguez-Lluhi J.A. Posner B.A. Gilman A.G. Sprang S.R. The structure of the G protein heterotrimer Giα1β1γ2. Cell 1995 83 6 1047 1058 10.1016/0092‑8674(95)90220‑1 8521505
    [Google Scholar]
  70. Ota T. Suzuki Y. Nishikawa T. Otsuki T. Sugiyama T. Irie R. Wakamatsu A. Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat. Genet. 2004 36 1 40 45 10.1038/ng1285 14702039
    [Google Scholar]
  71. Kim K.M. Caron M.G. Complementary roles of the DRY motif and C-terminus tail of GPCRS for G protein coupling and β-arrestin interaction. Biochem. Biophys. Res. Commun. 2008 366 1 42 47 10.1016/j.bbrc.2007.11.055 18036556
    [Google Scholar]
  72. Heifetz A. Barker O. Morris G.B. Law R.J. Slack M. Biggin P.C. Toward an understanding of agonist binding to human Orexin-1 and Orexin-2 receptors with G-protein-coupled receptor modeling and site-directed mutagenesis. Biochemistry 2013 52 46 10.1021/bi401119m
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206374428250403103159
Loading
/content/journals/acamc/10.2174/0118715206374428250403103159
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test