Skip to content
2000
Volume 25, Issue 14
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

The tetracyclic indoloquinoline ring system has attracted considerable interest in the recent past due to its broad spectrum of biological activities and its binding to various types of nucleic acids.

Objective

This study aims to elucidate their interactions with DNA and their effects on topoisomerases (TOPO) I and II.

Methods

Several compounds derived from 6-amino-11H-indolo[3,2-c]quinoline with diverse groups on the quinoline ring have been successfully synthesized according to a previously established protocol where all the synthesized indolo[3,2-c]quinoline derivatives were evaluated against A549, HCT-116, BALB/3T3, and MV4-11 cell lines using MTT (3-[4,5- dimethylthiazol-2-yl]-2,5-diphenyl- tetrazolium bromide) assay. These derivatives were then screened for their topo I and II inhibitory activities.

Results

The tested compounds were more effective at killing MV4-11 leukemia cells than the standard cancer drug cisplatin, as shown by the fact that their IC values were less than 0.9 μM. On the other hand, cisplatin revealed an IC value of 2.36 μM. Moreover, they exhibited inhibitory activity against both Topoisomerase (Topo) I and II. The most potent compound, , demonstrated a suppressive impact on topoisomerase I, with an IC value of 2.9 μM compared to the positive control Camptothecin (IC 1.64 μM) and compound displayed remarkable topoisomerase II inhibitory activity with an IC of 6.82 μM compared to the positive control Doxorubicin (IC 6.49 μM). The cell cycle study for compounds and revealed that cell cycle arrest occurred at the G1/S and S phases, respectively. Compounds and showed a high selectivity index, which suggests that they could be used to develop low-toxicity chemotherapeutic agents.

Conclusion

The results of this study demonstrate that compounds and can be considered promising candidates for further anti-cancer drug development, which might be related to inhibiting TOPO I and TOPO II activities.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206360700241219065917
2025-02-03
2025-07-12
Loading full text...

Full text loading...

References

  1. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.2183438572751
    [Google Scholar]
  2. SoerjomataramI. BrayF. Planning for tomorrow: Global cancer incidence and the role of prevention 2020–2070.Nat. Rev. Clin. Oncol.2021181066367210.1038/s41571‑021‑00514‑z34079102
    [Google Scholar]
  3. El SayedI.E. et al. Synthesis, Nanoformulations and In-vitro anticancer activity of N-substituted side chain neocryptolepine scaffolds. Molecules,2022273
    [Google Scholar]
  4. SelvamT.P. KarthickV. KumarP.V. AliM.A. Synthesis and structure-activity relationship study of 2-(substituted benzylidene)-7-(4-fluorophenyl)-5-(furan-2-yl)-2H-thiazolo[3,2-a]pyrimidin-3(7H)-one derivatives as anticancer agents.Drug Discov. Ther.20126419820410.5582/ddt.2012.v6.4.19823006990
    [Google Scholar]
  5. AkkachairinB. TummatornJ. KhamsuwanN. ThongsornkleebC. RuchirawatS. Domino N 2 -extrusion–cyclization of alkynylarylketone derivatives for the synthesis of indoloquinolines and carbocycle-fused quinolines.J. Org. Chem.20188318112541126810.1021/acs.joc.8b0185130084635
    [Google Scholar]
  6. AksenovA.V. AksenovD.A. OrazovaN.A. AksenovN.A. GriaznovG.D. De CarvalhoA. KissR. MathieuV. KornienkoA. RubinM. One-pot, three-component assembly of indoloquinolines: Total synthesis of isocryptolepine.J. Org. Chem.20178263011301810.1021/acs.joc.6b0308428253622
    [Google Scholar]
  7. ParvatkarP.T. ParameswaranP.S. Indoloquinolines: Possible biogenesis from common indole precursors and their synthesis using domino strategies.Curr. Org. Synth.2015131587210.2174/1570179412666150511224648
    [Google Scholar]
  8. WrightC.W. Addae-KyeremeJ. BreenA.G. BrownJ.E. CoxM.F. CroftS.L. GökçekY. KendrickH. PhillipsR.M. PolletP.L. Synthesis and evaluation of cryptolepine analogues for their potential as new antimalarial agents.J. Med. Chem.200144193187319410.1021/jm010929+11543688
    [Google Scholar]
  9. OnyeiborO. CroftS.L. DodsonH.I. Feiz-HaddadM. KendrickH. MillingtonN.J. ParapiniS. PhillipsR.M. SevilleS. ShnyderS.D. TaramelliD. WrightC.W. Synthesis of some cryptolepine analogues, assessment of their antimalarial and cytotoxic activities, and consideration of their antimalarial mode of action.J. Med. Chem.20054872701270910.1021/jm040893w15801861
    [Google Scholar]
  10. WangN. Structural modifications of nature-inspired indoloquinolines: A mini review of their potential antiproliferative activity.Molecules2019241110.3390/molecules24112121
    [Google Scholar]
  11. IbrahimE.S. MontgomerieA.M. SneddonA.H. ProctorG.R. GreenB. Synthesis of indolo[3,2-c]quinolines and indolo[3,2-d]benzazepines and their interaction with DNA.Eur. J. Med. Chem.198823218318810.1016/0223‑5234(88)90192‑4
    [Google Scholar]
  12. MarquezV.E. CranstonJ.W. RuddonR.W. KierL.B. BurckhalterJ.H. Mechanism of action of amodiaquine. Synthesis of its indoloquinoline analog.J. Med. Chem.1972151363910.1021/jm00271a0104550134
    [Google Scholar]
  13. LuW.J. ŚwitalskaM. WangL. YonezawaM. El-SayedI.E-T. WietrzykJ. InokuchiT. In vitros antiproliferative activity of 11-aminoalkylamino-substituted 5H-indolo[2,3-b]quinolines; Improving activity of neocryptolepines by installation of ester substituent.Med. Chem. Res.20132294492450410.1007/s00044‑012‑0443‑x
    [Google Scholar]
  14. AhmedA.A.S. AwadH.M. El-SayedI.E.T. El GokhaA.A. Synthesis and antiproliferative activity of new hybrids bearing neocryptolepine, acridine and α-aminophosphonate scaffolds.J. Indian Chem. Soc.20201751211122110.1007/s13738‑019‑01849‑2
    [Google Scholar]
  15. FanM. Screening for natural inhibitors of human topoisomerases from medicinal plants with bio-affinity ultrafiltration and LC–MS.Phytochem. Rev.20201951231126110.1007/s11101‑019‑09635‑x
    [Google Scholar]
  16. SinghS. PandeyV.P. YadavK. YadavA. DwivediU.N. Natural products as anti-cancerous therapeutic molecules targeted towards topoisomerases.Curr. Protein Pept. Sci.202021111103114210.2174/138920372166620091815251132951576
    [Google Scholar]
  17. NofalA.E. ElmongyE.I. HassanE.A. ToussonE. AhmedA.A.S. El SayedI.E.T. BinsuwaidanR. SakrM. Impact of synthesized indoloquinoline analog to isolates from Cryptolepis sanguinolenta on tumor growth inhibition and hepatotoxicity in ehrlich solid tumor-bearing female mice.Cells2023127102410.3390/cells1207102437048097
    [Google Scholar]
  18. LiangX. A comprehensive review of topoisomerase inhibitors as anticancer agents in the past decade.Europ. J. Med. Chem.201917112916810.1016/j.ejmech.2019.03.034
    [Google Scholar]
  19. WangJ.C. Cellular roles of DNA topoisomerases: A molecular perspective.Nat. Rev. Mol. Cell Biol.20023643044010.1038/nrm83112042765
    [Google Scholar]
  20. BadrM. ElmongyE.I. ElkhateebD. MoemenY.S. KhalilA. AliH. BinsuwaidanR. AwadallahF. El SayedI.E.T. In silico and in vitros investigation of cytotoxicity and apoptosis of acridine/sulfonamide hybrids targeting topoisomerases I and II.Pharmaceuticals20241711148710.3390/ph17111487
    [Google Scholar]
  21. KhadkaD.B. ChoW.J. Topoisomerase inhibitors as anticancer agents: A patent update.Expert Opin. Ther. Pat.20132381033105610.1517/13543776.2013.79095823611704
    [Google Scholar]
  22. WangN. ŚwitalskaM. WuM.Y. ImaiK. NgocT.A. PangC.Q. WangL. WietrzykJ. InokuchiT. Synthesis and in vitros cytotoxic effect of 6-amino-substituted 11H- and 11Me-indolo[3,2-c]quinolines.Eur. J. Med. Chem.20147831432310.1016/j.ejmech.2014.03.03824686018
    [Google Scholar]
  23. SkehanP. New colorimetric cytotoxicity assay for anticancer-drug screening.J. Natl. Cancer Inst.1990821311071112
    [Google Scholar]
  24. QuadruplexG. HuM. LinJ. New dibenzoquinoxalines inhibit triple-negative breast cancer growth by dual targeting of topoisomerase 1 and the c-MYC G-quadruplex.J. Med. Chem.2021106720672910.1021/acs.jmedchem.0c02202
    [Google Scholar]
  25. EissaI.H. El-NaggarA.M. El-SattarN.E.A.A. YoussefA.S.A. Design and discovery of novel quinoxaline derivatives as dual DNA intercalators and topoisomerase II inhibitors.Anticancer. Agents Med. Chem.201818219520910.2174/187152061766617071018240528699490
    [Google Scholar]
  26. TurkyA. BayoumiA.H. GhiatyA. El-AzabA.S. A-M Abdel-AzizA. AbulkhairH.S. Design, synthesis, and antitumor activity of novel compounds based on 1,2,4-triazolophthalazine scaffold: Apoptosis-inductive and PCAF-inhibitory effects.Bioorg. Chem.202010110401910.1016/j.bioorg.2020.10401932615465
    [Google Scholar]
  27. AndreeH.A. ReutelingspergerC.P. HauptmannR. HemkerH.C. HermensW.T. WillemsG.M. Binding of vascular anticoagulant α (VAC α) to planar phospholipid bilayers.J. Biol. Chem.199026594923492810.1016/S0021‑9258(19)34062‑12138622
    [Google Scholar]
  28. ShumJ. LeungP.K.K. LoK.K.W. Luminescent Ruthenium(II) polypyridine complexes for a wide variety of biomolecular and cellular applications.Inorg. Chem.20195842231224710.1021/acs.inorgchem.8b0297930693762
    [Google Scholar]
  29. SegunP.A. OgboleO.O. IsmailF.M.D. NaharL. EvansA.R. AjaiyeobaE.O. SarkerS.D. Resveratrol derivatives fromCommiphora africana (A. Rich.) Endl. display cytotoxicity and selectivity against several human cancer cell lines.Phytother. Res.201933115916610.1002/ptr.620930346066
    [Google Scholar]
  30. SutejoI.R. PutriH. MeiyantoE. The selectivity of ethanolic extract of buah makassar (Brucea javanica) on metastatic breast cancer cells.J. Agromed. Med. Sci.1970211610.19184/ams.v2i1.2422
    [Google Scholar]
  31. ButtS.S. BadshahY. ShabbirM. RafiqM. Molecular docking using chimera and autodock vina software for nonbioinformaticians.JMIR Bioinform. Biotechnol.202011e1423210.2196/1423238943236
    [Google Scholar]
  32. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep4271728256516
    [Google Scholar]
  33. WenzelE.S. SinghA.T.K. Cell-cycle checkpoints and aneuploidy on the path to cancer.In Vivo20183211510.21873/invivo.1119729275292
    [Google Scholar]
  34. ElbastawesyM.A.I. AlyA.A. RamadanM. ElshaierY.A.M.M. YoussifB.G.M. BrownA.B. El-Din A Abuo-RahmaG. Novel pyrazoloquinolin-2-ones: Design, synthesis, docking studies, and biological evaluation as antiproliferative EGFR-TK inhibitors.Bioorg. Chem.20199010304510.1016/j.bioorg.2019.10304531212178
    [Google Scholar]
  35. Da’iM. MeilinasaryK.A. SuhendiA. HaryantiS. Selectivity index of alpinia galanga extract and 1′-acetoxychavicol acetate on cancer cell lines.Indones. J. Cancer Chemoprevent.20191029510.14499/indonesianjcanchemoprev10iss2pp95‑100
    [Google Scholar]
  36. StakerB.L. HjerrildK. FeeseM.D. BehnkeC.A. BurginA.B.Jr StewartL. The mechanism of topoisomerase I poisoning by a camptothecin analog.Proc. Natl. Acad. Sci. USA20029924153871539210.1073/pnas.24225959912426403
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206360700241219065917
Loading
/content/journals/acamc/10.2174/0118715206360700241219065917
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test