Skip to content
2000
image of Potentials of N-Acyl hydrazones Against Colorectal Cancer: A Mini Review

Abstract

Colorectal cancer (CRC) is a malignant gastrointestinal tract disorder with high occurrence and mortality index and showing an upsurge. Standard therapies for treating CRC are surgery and chemotherapy. Despite great effort in developing effective treatments, the progress is limited due to its relapse and recurrence. Prognosis of metastatic CRC is always complicated. This condition can be evaded by a novel approach ., targeted therapy which increases the survival rate in CRC patients by blocking important pathways and acting on immune checkpoints. Drugs with -acyl hydrazones (NAH) are currently being employed treatment of infectious diseases and disorders. NAH in combination with diverse heterocycles, natural product isolates are identified as interesting CRC inhibitors under-explored. This review provides an overview of the existing CRC targeted compounds having acyl hydrazones, hydrazine, hydrazides moieties, and their underlying mechanisms towards different CRC cell lines, together with a discussion of their limitations and future trends.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206356253241223040825
2025-01-23
2025-03-29
Loading full text...

Full text loading...

References

  1. Abdel-Aziz H.A. Elsaman T. Al-Dhfyan A. Attia M.I. Al-Rashood K.A. Al-Obaid A.R.M. Synthesis and anticancer potential of certain novel 2-oxo-N'-(2-oxoindolin-3-ylidene)-2H-chromene-3-carbohydrazides. Eur. J. Med. Chem. 2013 70 358 363 10.1016/j.ejmech.2013.09.060 24177362
    [Google Scholar]
  2. Castrillón-López W. Herrera-Ramírez A. Moreno-Quintero G. Coa J.C. Naranjo T.W. Cardona-Galeano W. Resveratrol/hydrazone hybrids: Synthesis and chemopreventive activity against colorectal cancer cells. Pharmaceutics 2022 14 11 2278 10.3390/pharmaceutics14112278 36365097
    [Google Scholar]
  3. Colorectal Cancer statistics. Available from: https://www.who.int/news-room/fact-sheets/detail/colorectal-cancer (Accessed on Sep 11, 2024).
  4. Cancer WHO. Available from: https://www.who.int/news-room/fact-sheets/detail/cancer (Accessed on Sep 11, 2024).
  5. Sawicki T. Ruszkowska M. Danielewicz A. Niedźwiedzka E. Arłukowicz T. Przybyłowicz K.E. A review of colorectal cancer in terms of epidemiology, risk factors, development, symptoms and diagnosis. Cancers 2021 13 9 2025 10.3390/cancers13092025 33922197
    [Google Scholar]
  6. Mármol I. Sánchez-de-Diego C. Pradilla Dieste A. Cerrada E. Rodriguez Yoldi M. Colorectal carcinoma: A general overview and future perspectives in colorectal cancer. Int. J. Mol. Sci. 2017 18 1 197 10.3390/ijms18010197 28106826
    [Google Scholar]
  7. Küçükgüzel Ş.G. Koç D. Çıkla-Süzgün P. Özsavcı D. Bingöl-Özakpınar Ö. Mega-Tiber P. Orun O. Erzincan P. Sağ-Erdem S. Şahin F. Synthesis of tolmetin hydrazide–hydrazones and discovery of a potent apoptosis inducer in colon cancer cells. Arch. Pharm. 2015 348 10 730 742 10.1002/ardp.201500178 26287512
    [Google Scholar]
  8. Narayanan S. Gupta P. Nazim U. Ali M. Karadkhelkar N. Ahmad M. Chen Z.S. Anti-cancer effect of indanone-based thiazolyl hydrazone derivative on colon cancer cell lines. Int. J. Biochem. Cell Biol. 2019 110 21 28 10.1016/j.biocel.2019.02.004 30794858
    [Google Scholar]
  9. Lewandowska A. Rudzki G. Lewandowski T. Stryjkowska-Góra A. Rudzki S. Risk factors for the diagnosis of colorectal cancer. Cancer Contr. 2022 29 10732748211056692 10.1177/10732748211056692 35000418
    [Google Scholar]
  10. Xie Y.H. Chen Y.X. Fang J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 2020 5 1 22 10.1038/s41392‑020‑0116‑z 32296018
    [Google Scholar]
  11. Biliz Y. Hasdemir B. Başpınar Küçük H. Zaim M. Şentürk A.M. Müdüroğlu Kırmızıbekmez A. Kara İ. Novel N -acyl hydrazone compounds as promising anticancer agents: Synthesis and molecular docking studies. ACS Omega 2023 8 22 20073 20084 10.1021/acsomega.3c02361 37305237
    [Google Scholar]
  12. Socea L.I. Barbuceanu S.F. Pahontu E.M. Dumitru A.C. Nitulescu G.M. Sfetea R.C. Apostol T.V. Acylhydrazones and their biological activity: A review. Molecules 2022 27 24 8719 10.3390/molecules27248719 36557851
    [Google Scholar]
  13. Su G. Wang D. Yang Q. Kong L. Ju X. Yang Q. Zhu Y. Zhang S. Li Y. Cepharanthine suppresses APC-mutant colorectal cancers by down-regulating the expression of β-catenin. Nat. Prod. Bioprospect. 2024 14 1 18 10.1007/s13659‑024‑00443‑1 38421454
    [Google Scholar]
  14. Nguyen L.H. Goel A. Chung D.C. Pathways of colorectal carcinogenesis. Gastroenterology 2020 158 2 291 302 10.1053/j.gastro.2019.08.059 31622622
    [Google Scholar]
  15. Kalyan A. Kircher S. Shah H. Mulcahy M. Benson A. Updates on immunotherapy for colorectal cancer. J. Gastrointest. Oncol. 2018 9 1 160 169 10.21037/jgo.2018.01.17 29564182
    [Google Scholar]
  16. Andre T. Lonardi S. Wong M. Lenz H.J. Gelsomino F. Aglietta M. Morse M. Van Cutsem E. McDermott R.S. Hill A.G. Sawyer M.B. Hendlisz A. Neyns B. Svrcek M. Moss R.A. Ledeine J.M. Cao Z.A. Kamble S. Kopetz S. Overman M.J. Nivolumab + ipilimumab combination in patients with DNA mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) metastatic colorectal cancer (mCRC): First report of the full cohort from CheckMate-142. J. Clin. Oncol. 2018 36 4_suppl Suppl. 553 10.1200/JCO.2018.36.4_suppl.553
    [Google Scholar]
  17. Gonzalez M.W. Kann M.G. Chapter 4: Protein interactions and disease. PLOS Comput. Biol. 2012 8 12 e1002819 10.1371/journal.pcbi.1002819 23300410
    [Google Scholar]
  18. Liu J. Xiao Q. Xiao J. Niu C. Li Y. Zhang X. Zhou Z. Shu G. Yin G. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022 7 1 3 10.1038/s41392‑021‑00762‑6 34980884
    [Google Scholar]
  19. Aghabozorgi A.S. Bahreyni A. Soleimani A. Bahrami A. Khazaei M. Ferns G.A. Avan A. Hassanian S.M. Role of adenomatous polyposis coli (APC) gene mutations in the pathogenesis of colorectal cancer; current status and perspectives. Biochimie 2019 157 64 71 10.1016/j.biochi.2018.11.003 30414835
    [Google Scholar]
  20. Kawasaki Y. Senda T. Ishidate T. Koyama R. Morishita T. Iwayama Y. Higuchi O. Akiyama T. Asef, a link between the tumor suppressor APC and G-protein signaling. Science 2000 289 5482 1194 1197 10.1126/science.289.5482.1194 10947987
    [Google Scholar]
  21. Aoki K. Taketo M.M. Adenomatous polyposis coli (APC): A multi-functional tumor suppressor gene. J. Cell Sci. 2007 120 19 3327 3335 10.1242/jcs.03485 17881494
    [Google Scholar]
  22. Akiyama T. Kawasaki Y. Wnt signalling and the actin cytoskeleton. Oncogene 2006 25 57 7538 7544 10.1038/sj.onc.1210063 17143298
    [Google Scholar]
  23. Shailes H. Tse W.Y. Freitas M.O. Silver A. Martin S.A. Statin treatment as a targeted therapy for APC-mutated colorectal cancer. Front. Oncol. 2022 12 880552 10.3389/fonc.2022.880552 35712511
    [Google Scholar]
  24. Jasperson K.W. Tuohy T.M. Neklason D.W. Burt R.W. Hereditary and familial colon cancer. Gastroenterology 2010 138 6 2044 2058 10.1053/j.gastro.2010.01.054 20420945
    [Google Scholar]
  25. Kawasaki Y. Sagara M. Shibata Y. Shirouzu M. Yokoyama S. Akiyama T. Identification and characterization of Asef2, a guanine–nucleotide exchange factor specific for Rac1 and Cdc42. Oncogene 2007 26 55 7620 7627 10.1038/sj.onc.1210574 17599059
    [Google Scholar]
  26. Sagara M. Kawasaki Y. Iemura S. Natsume T. Takai Y. Akiyama T. Asef2 and Neurabin2 cooperatively regulate actin cytoskeletal organization and are involved in HGF-induced cell migration. Oncogene 2009 28 10 1357 1365 10.1038/onc.2008.478 19151759
    [Google Scholar]
  27. Kawasaki Y. Jigami T. Furukawa S. Sagara M. Echizen K. Shibata Y. Sato R. Akiyama T. The adenomatous polyposis coli-associated guanine nucleotide exchange factor Asef is involved in angiogenesis. J. Biol. Chem. 2010 285 2 1199 1207 10.1074/jbc.M109.040691 19897489
    [Google Scholar]
  28. Zhang Z. Chen L. Gao L. Lin K. Zhu L. Lu Y. Shi X. Gao Y. Zhou J. Xu P. Zhang J. Wu G. Structural basis for the recognition of Asef by adenomatous polyposis coli. Cell Res. 2012 22 2 372 386 10.1038/cr.2011.119 21788986
    [Google Scholar]
  29. Murayama K. Shirouzu M. Kawasaki Y. Kato-Murayama M. Hanawa-Suetsugu K. Sakamoto A. Katsura Y. Suenaga A. Toyama M. Terada T. Taiji M. Akiyama T. Yokoyama S. Crystal structure of the rac activator, Asef, reveals its autoinhibitory mechanism. J. Biol. Chem. 2007 282 7 4238 4242 10.1074/jbc.C600234200 17190834
    [Google Scholar]
  30. Hanson C.A. Miller J.R. Non-traditional roles for the Adenomatous Polyposis Coli (APC) tumor suppressor protein. Gene 2005 361 1 12 10.1016/j.gene.2005.07.024 16185824
    [Google Scholar]
  31. Muroya K. Kawasaki Y. Hayashi T. Ohwada S. Akiyama T. PH domain-mediated membrane targeting of Asef. Biochem. Biophys. Res. Commun. 2007 355 1 85 88 10.1016/j.bbrc.2007.01.131 17292853
    [Google Scholar]
  32. Mitin N. Betts L. Yohe M.E. Der C.J. Sondek J. Rossman K.L. Release of autoinhibition of ASEF by APC leads to CDC42 activation and tumor suppression. Nat. Struct. Mol. Biol. 2007 14 9 814 823 10.1038/nsmb1290 17704816
    [Google Scholar]
  33. Jiang H. Deng R. Yang X. Shang J. Lu S. Zhao Y. Song K. Liu X. Zhang Q. Chen Y. Chinn Y.E. Wu G. Li J. Chen G. Yu J. Zhang J. Peptidomimetic inhibitors of APC–Asef interaction block colorectal cancer migration. Nat. Chem. Biol. 2017 13 9 994 1001 10.1038/nchembio.2442 28759015
    [Google Scholar]
  34. Hamann M.J. Lubking C.M. Luchini D.N. Billadeau D.D. Asef2 functions as a Cdc42 exchange factor and is stimulated by the release of an autoinhibitory module from a concealed C-terminal activation element. Mol. Cell. Biol. 2007 27 4 1380 1393 10.1128/MCB.01608‑06 17145773
    [Google Scholar]
  35. Song S. Christova T. Perusini S. Alizadeh S. Bao R.Y. Miller B.W. Hurren R. Jitkova Y. Gronda M. Isaac M. Joseph B. Subramaniam R. Aman A. Chau A. Hogge D.E. Weir S.J. Kasper J. Schimmer A.D. Al-awar R. Wrana J.L. Attisano L. Wnt inhibitor screen reveals iron dependence of β-catenin signaling in cancers. Cancer Res. 2011 71 24 7628 7639 10.1158/0008‑5472.CAN‑11‑2745 22009536
    [Google Scholar]
  36. Shin S.H. Lim D.Y. Reddy K. Malakhova M. Liu F. Wang T. Song M. Chen H. Bae K.B. Ryu J. Liu K. Lee M.H. Bode A.M. Dong Z. A small molecule inhibitor of the β-catenin-TCF4 interaction suppresses colorectal cancer growth in vitro and in vivo. EBioMedicine 2017 25 22 31 10.1016/j.ebiom.2017.09.029 29033371
    [Google Scholar]
  37. Jaiswal A.S. Banerjee S. Aneja R. Sarkar F.H. Ostrov D.A. Narayan S. DNA polymerase β as a novel target for chemotherapeutic intervention of colorectal cancer. PLoS One 2011 6 2 e16691 10.1371/journal.pone.0016691 21311763
    [Google Scholar]
  38. Kim M.S. Cho H.I. Yoon H.J. Ahn Y.H. Park E.J. Jin Y.H. Jang Y.K. JIB-04, a small molecule histone demethylase inhibitor, selectively targets colorectal cancer stem cells by inhibiting the wnt/β-catenin signaling pathway. Sci. Rep. 2018 8 1 6611 10.1038/s41598‑018‑24903‑0 29700375
    [Google Scholar]
  39. Zhang J. Liu T. Chen M. Liu F. Liu X. Zhang J. Lin J. Jin Y. Synthesis and biological evaluation of indole‐2‐carbohydrazide derivatives as anticancer agents with anti‐angiogenic and antiproliferative activities. ChemMedChem 2018 13 12 1181 1192 10.1002/cmdc.201800033 29637713
    [Google Scholar]
  40. Han Y. Tian Y. Wang R. Fu S. Jiang J. Dong J. Qin M. Hou Y. Zhao Y. Design, synthesis and biological evaluation of thieno[3,2-d]pyrimidine derivatives containing aroyl hydrazone or aryl hydrazide moieties for PI3K and mTOR dual inhibition. Bioorg. Chem. 2020 104 104197 10.1016/j.bioorg.2020.104197 32927132
    [Google Scholar]
  41. Ahmad M.F. Alam I. Huff S.E. Pink J. Flanagan S.A. Shewach D. Misko T.A. Oleinick N.L. Harte W.E. Viswanathan R. Harris M.E. Dealwis C.G. Potent competitive inhibition of human ribonucleotide reductase by a nonnucleoside small molecule. Proc. Natl. Acad. Sci. USA 2017 114 31 8241 8246 10.1073/pnas.1620220114 28716944
    [Google Scholar]
  42. Sorna V. Theisen E.R. Stephens B. Warner S.L. Bearss D.J. Vankayalapati H. Sharma S. High-throughput virtual screening identifies novel N′-(1-phenylethylidene)-benzohydrazides as potent, specific, and reversible LSD1 inhibitors. J. Med. Chem. 2013 56 23 9496 9508 10.1021/jm400870h 24237195
    [Google Scholar]
  43. Soldi R. Ghosh Halder T. Weston A. Thode T. Drenner K. Lewis R. Kaadige M.R. Srivastava S. Daniel Ampanattu S. Rodriguez del Villar R. Lang J. Vankayalapati H. Weissman B. Trent J.M. Hendricks W.P.D. Sharma S. The novel reversible LSD1 inhibitor SP-2577 promotes anti-tumor immunity in SWItch/Sucrose-NonFermentable (SWI/SNF) complex mutated ovarian cancer. PLoS One 2020 15 7 e0235705 10.1371/journal.pone.0235705 32649682
    [Google Scholar]
  44. Ye T.H. Yang F.F. Zhu Y.X. Li Y.L. Lei Q. Song X.J. Xia Y. Xiong Y. Zhang L.D. Wang N.Y. Zhao L.F. Gou H.F. Xie Y.M. Yang S.Y. Yu L.T. Yang L. Wei Y.Q. Inhibition of Stat3 signaling pathway by nifuroxazide improves antitumor immunity and impairs colorectal carcinoma metastasis. Cell Death Dis. 2017 8 1 e2534 10.1038/cddis.2016.452 28055016
    [Google Scholar]
  45. Han M.İ. İmamoğlu N. Design, synthesis, and anticancer evaluation of novel tetracaine hydrazide-hydrazones. ACS Omega 2023 8 10 9198 9211 10.1021/acsomega.2c07192 36936335
    [Google Scholar]
  46. Patil S. Kuman M.M. Palvai S. Sengupta P. Basu S. Impairing powerhouse in colon cancer cells by hydrazide–hydrazone-based small molecule. ACS Omega 2018 3 2 1470 1481 10.1021/acsomega.7b01512 30023806
    [Google Scholar]
  47. Amerizadeh F. Rahmani F. Maftooh M. Nasiri S.N. Hassanian S.M. Giovannetti E. Moradi-Marjaneh R. Sabbaghzadeh R. Shahidsales S. Joudi-Mashhad M. Ghayour-Mobarhan M. Ferns G.A. Khazaei M. Avan A. Inhibition of the Wnt/b-catenin pathway using PNU-74654 reduces tumor growth in in vitro and in vivo models of colorectal cancer. Tissue Cell 2022 77 101853 10.1016/j.tice.2022.101853 35803035
    [Google Scholar]
  48. Samir M. Ramadan M. Abdelrahman M.H. Abdelbaset M.S. Abourehab M.A.S. Abdel-Aziz M. Abuo-Rahma G.E.D.A. 3,7-bis-benzylidene hydrazide ciprofloxacin derivatives as promising antiproliferative dual TOP I & TOP II isomerases inhibitors. Bioorg. Chem. 2021 110 104698 10.1016/j.bioorg.2021.104698 33676043
    [Google Scholar]
  49. Al-Blewi F.F. Rezki N. Al-Sodies S.A. Bardaweel S.K. Sabbah D.A. Messali M. Aouad M.R. Novel amphiphilic pyridinium ionic liquids-supported Schiff bases: Ultrasound assisted synthesis, molecular docking and anticancer evaluation. Chem. Cent. J. 2018 12 1 118 10.1186/s13065‑018‑0489‑z 30467608
    [Google Scholar]
  50. Plasencia C. Grande F. Oshima T. Cao X. Yamada R. Sanchez T. Aiello F. Garofalo A. Neamati N. Discovery of a novel quinoxalinhydrazide with a broad-spectrum anticancer activity. Cancer Biol. Ther. 2009 8 5 458 465 10.4161/cbt.8.5.7741 19221468
    [Google Scholar]
  51. Gautam A. Rawat P. Singh R.N. Flores Holguin N.R. Synthesis, spectroscopic and evaluation of anticancer activity of new hydrazone-containing dipyrromethane using experimental and theoretical approaches. J. Mol. Struct. 2022 1260 132781 10.1016/j.molstruc.2022.132781
    [Google Scholar]
  52. Shin S.Y. Lee J. Ahn S. Yoo M. Lee Y.H. Koh D. Lim Y. Design, synthesis, and evaluation of 4-chromenone derivatives combined with N-acylhydrazone for aurora kinase A inhibitor. Appl. Biol. Chem. 2021 64 1 21 10.1186/s13765‑021‑00596‑4
    [Google Scholar]
  53. Kamal Bouhadir K.B. Atallah H. Mezher R. Fatfat M. Gali-Muhtasib H. Elaridi J. Synthesis and biological assessment of novel acylhydrazone derivatives of 2-methyl-1,4-naphthoquinone. Organic Communications 2017 10 4 259 272 10.25135/acg.oc.26.17.07.040
    [Google Scholar]
  54. Barbosa V.A. Baréa P. Mazia R.S. Ueda-Nakamura T. Costa W.F. Foglio M.A. Goes Ruiz A.L.T. Carvalho J.E. Vendramini-Costa D.B. Nakamura C.V. Sarragiotto M.H. Synthesis and evaluation of novel hybrids β -carboline-4-thiazolidinones as potential antitumor and antiviral agents. Eur. J. Med. Chem. 2016 124 1093 1104 10.1016/j.ejmech.2016.10.018 27792980
    [Google Scholar]
  55. Li Y. Yan W. Yang J. Yang Z. Hu M. Bai P. Tang M. Chen L. Discovery of novel β-carboline/acylhydrazone hybrids as potent antitumor agents and overcome drug resistance. Eur. J. Med. Chem. 2018 152 516 526 10.1016/j.ejmech.2018.05.003 29754076
    [Google Scholar]
  56. Potočnjak I. Šimić L. Vukelić I. Batičić L. Domitrović R. Oleanolic acid induces HCT116 colon cancer cell death through the p38/FOXO3a/Sirt6 pathway. Chem. Biol. Interact. 2022 363 110010 10.1016/j.cbi.2022.110010 35690101
    [Google Scholar]
  57. Niu G. Sun L. Pei Y. Wang D. Oleanolic acid inhibits colorectal cancer angiogenesis by blocking the VEGFR2 signaling pathway. Anticancer. Agents Med. Chem. 2018 18 4 583 590 10.2174/1871520617666171020124916 29065844
    [Google Scholar]
  58. Hu D. Meng R.Y. Nguyen T.V. Chai O.H. Park B.H. Lee J-S. Kim S.M. Inhibition of colorectal cancer tumorigenesis by ursolic acid and doxorubicin is mediated by targeting the Akt signaling pathway and activating the Hippo signaling pathway. Mol. Med. Rep. 2023 27 1 1 18 36382656
    [Google Scholar]
  59. Zeng A. Hua H. Liu L. Zhao J. Betulinic acid induces apoptosis and inhibits metastasis of human colorectal cancer cells in vitro and in vivo. Bioorg. Med. Chem. 2019 27 12 2546 2552 10.1016/j.bmc.2019.03.033 30910472
    [Google Scholar]
  60. Potze L. di Franco S. Kessler J.H. Stassi G. Medema J.P. Betulinic acid kills colon cancer stem cells. Curr. Stem Cell Res. Ther. 2016 11 5 427 433 10.2174/1574888X11666151203223512 26647913
    [Google Scholar]
  61. Zhang X. Hu J. Chen Y. Betulinic acid and the pharmacological effects of tumor suppression. Mol. Med. Rep. 2016 14 5 4489 4495 10.3892/mmr.2016.5792 27748864
    [Google Scholar]
  62. Jin J.S. Tsao T.Y. Sun P.C. Yu C.P. Tzao C. SAHA inhibits the growth of colon tumors by decreasing histone deacetylase and the expression of cyclin D1 and survivin. Pathol. Oncol. Res. 2012 18 3 713 720 10.1007/s12253‑012‑9499‑7 22270866
    [Google Scholar]
  63. Wang X. Xu J. Wang H. Wu L. Yuan W. Du J. Cai S. Trichostatin A, a histone deacetylase inhibitor, reverses epithelial–mesenchymal transition in colorectal cancer SW480 and prostate cancer PC3 cells. Biochem. Biophys. Res. Commun. 2015 456 1 320 326 10.1016/j.bbrc.2014.11.079 25434997
    [Google Scholar]
  64. Huang T-H. Wu S-Y. Huang Y-J. Wei P-L. Wu A.T. Chao T-Y. The identification and validation of Trichosstatin A as a potential inhibitor of colon tumorigenesis and colon cancer stem-like cells. Am. J. Cancer Res. 2017 7 5 1227 1237 28560069
    [Google Scholar]
  65. Rodrigues D.A. Ferreira-Silva G.À. Ferreira A.C.S. Fernandes R.A. Kwee J.K. Sant’Anna C.M.R. Ionta M. Fraga C.A.M. Design, synthesis, and pharmacological evaluation of novel N -acylhydrazone derivatives as potent histone deacetylase 6/8 dual inhibitors. J. Med. Chem. 2016 59 2 655 670 10.1021/acs.jmedchem.5b01525 26705137
    [Google Scholar]
  66. Azad N.S. Shirai K. McRee A.J. Opyrchal M. Johnson D.B. Ordentlich P. Brouwer S. Sankoh S. Schmidt E.V. Meyers M.L. Johnson M.L. ENCORE 601: A phase 2 study of entinostat in combination with pembrolizumab in patients with microsatellite stable metastatic colorectal cancer. J. Clin. Oncol. 2018 36 15_suppl 3557 10.1200/JCO.2018.36.15_suppl.3557
    [Google Scholar]
  67. Preciado D. Moreno G. Cardona W. Yepes A.F. Discovery of novel trihybrids based on salicylic acid/isoleucine/ N-acylhydrazone: A promising therapeutic opportunity in colorectal cancer. J. Appl. Pharm. Sci. 2022 12 11 10 20 10.7324/JAPS.2022.121102
    [Google Scholar]
  68. Vilková M. Hudáčová M. Palušeková N. Jendželovský R. Almáši M. Béres T. Fedoročko P. Kožurková M. Acridine based N-acylhydrazone derivatives as potential anticancer agents: Synthesis, characterization and ctDNA/HSA spectroscopic binding properties. Molecules 2022 27 9 2883 10.3390/molecules27092883 35566236
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206356253241223040825
Loading
/content/journals/acamc/10.2174/0118715206356253241223040825
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: pathways ; inhibitors ; Colorectal cancer ; N-acyl hydrazine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test