Skip to content
2000
image of Quercetin’s Potential Therapeutic Role in Human Colorectal Cancer: An Effective Strategy for Prevention and Treatment

Abstract

Background

Colorectal cancer (CRC) is a significant global health burden, ranking third in incidence and second in mortality worldwide. The incidence of CRC continues to rise, and drug resistance to conventional therapies such as 5-fluorouracil (5-FU) poses a challenge in treatment. Quercetin, a naturally occurring flavonol, has shown anti-carcinogenic properties and potential in sensitizing cancer cells to chemotherapy.

Aims and Objective

This review assesses recent animal and clinical studies on the impact of quercetin on CRC treatment and progression and evaluates its potential in combination with conventional therapies.

Methods

A comprehensive literature search was conducted to identify relevant studies investigating quercetin's effects on CRC. The search included both animal and clinical studies.

Results

Quercetin has been shown to inhibit cancer progression through cell cycle arrest and apoptosis induction. It sensitizes cancer cells to chemotherapy while exhibiting protective effects on normal cells. In CRC, quercetin has demonstrated potential in reducing tumor growth and modulating signaling pathways involved in inflammation and immune responses.

Conclusion

Quercetin shows promise as a novel therapeutic agent for CRC, and its combination with conventional therapies may lead to more effective treatment options and improved patient outcomes. Further research is warranted to validate these findings in clinical settings.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206354948250226103832
2025-03-06
2025-04-02
Loading full text...

Full text loading...

References

  1. Huang J. Global epidemiology, Precursor detection, And screening uptake for colorectal cancer. Hong Kong The Chinese University of Hong Kong 2021
    [Google Scholar]
  2. Safarpour A.R. Bananzadeh A. Izadpanah A. Ghahramani L. Tadayon S.M.K. Bahrami F. Hosseini S.V. Report of 13-year survival of patients with colon and rectal cancers; lessons from Shiraz colorectal cancer surgery registry system of a level three medical center. BMC Surg. 2022 22 1 142 10.1186/s12893‑022‑01591‑2 35428290
    [Google Scholar]
  3. Xie Y.H. Chen Y.X. Fang J.Y. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct. Target. Ther. 2020 5 1 22 10.1038/s41392‑020‑0116‑z 32296018
    [Google Scholar]
  4. Rejhová A. Opattová A. Čumová A. Slíva D. Vodička P. Natural compounds and combination therapy in colorectal cancer treatment. Eur. J. Med. Chem. 2018 144 582 594 10.1016/j.ejmech.2017.12.039 29289883
    [Google Scholar]
  5. Ashique S. Bhowmick M. Pal R. Khatoon H. Kumar P. Sharma H. Multi drug resistance in colorectal cancer-approaches to overcome, Advancements and future success. Adv. Cancer Biol. Metast. 2024 12 100114
    [Google Scholar]
  6. Gavrilas L.I. Cruceriu D. Mocan A. Loghin F. Miere D. Balacescu O. Plant-derived bioactive compounds in colorectal cancer: Insights from combined regimens with conventional chemotherapy to overcome drug-resistance. Biomedicines 2022 10 8 1948 10.3390/biomedicines10081948 36009495
    [Google Scholar]
  7. Li Y. Yao J. Han C. Yang J. Chaudhry M. Wang S. Liu H. Yin Y. Quercetin, inflammation and immunity. Nutrients 2016 8 3 167 10.3390/nu8030167 26999194
    [Google Scholar]
  8. Bhat I.U.H. Bhat R. Quercetin: A bioactive compound imparting cardiovascular and neuroprotective benefits: Scope for exploring fresh produce, Their wastes, And by-products. Biology 2021 10 7 586 10.3390/biology10070586 34206761
    [Google Scholar]
  9. Parasuraman S. David A.A.V. Arulmoli R. Overviews of biological importance of quercetin: A bioactive flavonoid. Pharmacogn. Rev. 2016 10 20 84 89 10.4103/0973‑7847.194044 28082789
    [Google Scholar]
  10. Basak D. Uddin M.N. Hancock J. The role of oxidative stress and its counteractive utility in colorectal cancer (CRC). Cancers 2020 12 11 3336 10.3390/cancers12113336 33187272
    [Google Scholar]
  11. Avan A. Mehrabadi S. Velayati M. Zafari N. Hassanian S.M. Mobarhan M.G. Ferns G. Khazaei M. Growth-hormone-releasing hormone as a prognostic biomarker and therapeutic target in gastrointestinal cancer. Curr. Cancer Drug Targ. 2023 23 5 346 353 10.2174/1568009623666221228094557 36582060
    [Google Scholar]
  12. Mehrabadi S. Interaction between gut microbiota dysbiosis and multiple sclerosis 2019 24 19 14756 10.3390/ijms241914756 37834203
    [Google Scholar]
  13. Damavandi S. Avan A. Zafari N. Velayati M. Mehrabadi S. Khazaei M. Hassanian S.M. Ferns G.A. Remodeling of the gut microbiota in colorectal cancer and its association with obesity. Curr. Pharm. Des. 2023 29 4 256 271 10.2174/1381612829666230118123018 36654469
    [Google Scholar]
  14. Ding C. Shan Z. Li M. Chen H. Li X. Jin Z. Characterization of the fatty acid metabolism in colorectal cancer to guide clinical therapy. Mol. Ther. Oncolytics 2021 20 532 544 10.1016/j.omto.2021.02.010 33738339
    [Google Scholar]
  15. Yang M. Yang H. Ji L. Hu X. Tian G. Wang B. Yang J. A multi-omics machine learning framework in predicting the survival of colorectal cancer patients. Comput. Biol. Med. 2022 146 105516 10.1016/j.compbiomed.2022.105516 35468406
    [Google Scholar]
  16. Chan C.Y. Lien C.H. Lee M.F. Huang C.Y. Quercetin suppresses cellular migration and invasion in human head and neck squamous cell carcinoma (HNSCC). Biomedicine 2016 6 3 15 10.7603/s40681‑016‑0015‑3 27510965
    [Google Scholar]
  17. Almatroodi S.A. Alsahli M.A. Almatroudi A. Verma A.K. Aloliqi A. Allemailem K.S. Khan A.A. Rahmani A.H. Potential therapeutic targets of quercetin, a plant flavonol, and its role in the therapy of various types of cancer through the modulation of various cell signaling pathways. Molecules 2021 26 5 1315 10.3390/molecules26051315 33804548
    [Google Scholar]
  18. Jain A. Madu C.O. Lu Y. Phytochemicals in chemoprevention: A cost-effective complementary approach. J. Cancer 2021 12 12 3686 3700 10.7150/jca.57776 33995644
    [Google Scholar]
  19. Ghafouri-Fard S. Shabestari F.A. Vaezi S. Abak A. Shoorei H. Karimi A. Taheri M. Basiri A. Emerging impact of quercetin in the treatment of prostate cancer. Biomed. Pharmacother. 2021 138 111548 10.1016/j.biopha.2021.111548 34311541
    [Google Scholar]
  20. Ezzati M. Yousefi B. Velaei K. Safa A. A review on anti-cancer properties of Quercetin in breast cancer. Life Sci. 2020 248 117463 10.1016/j.lfs.2020.117463 32097663
    [Google Scholar]
  21. Sharma H. Sen S. Singh N. Molecular pathways in the chemosensitization of cisplatin by quercetin in human head and neck cancer. Cancer Biol. Ther. 2005 4 9 949 955 10.4161/cbt.4.9.1908 16082193
    [Google Scholar]
  22. Uttarawichien T. Kamnerdnond C. Inwisai T. Suwannalert P. Sibmooh N. Payuhakrit W. Quercetin inhibits colorectal cancer cells induced-angiogenesis in both colorectal cancer cell and endothelial cell through downregulation of VEGF-A/VEGFR2. Sci. Pharm. 2021 89 2 23 10.3390/scipharm89020023
    [Google Scholar]
  23. Leersum v.N.J. Aalbers A.G. Snijders H.S. Henneman D. Wouters M.W. Tollenaar R.A. Eddes E.H. Synchronous colorectal carcinoma: A risk factor in colorectal cancer surgery. Dis. Colon Rectum 2014 57 4 460 466 10.1097/DCR.0000000000000068 24608302
    [Google Scholar]
  24. Häfner M.F. Debus J. Radiotherapy for colorectal cancer: Current standards and future perspectives. Visc. Med. 2016 32 3 172 177 10.1159/000446486 27493944
    [Google Scholar]
  25. Nørgaard A. Dam C. Jakobsen A. Pløen J. Lindebjerg J. Rafaelsen S.R. Selection of colon cancer patients for neoadjuvant chemotherapy by preoperative CT scan. Scand. J. Gastroenterol. 2014 49 2 202 208 10.3109/00365521.2013.862294 24279811
    [Google Scholar]
  26. Ganesh K. Stadler Z.K. Cercek A. Mendelsohn R.B. Shia J. Segal N.H. Diaz L.A. Jr Immunotherapy in colorectal cancer: Rationale, Challenges and potential. Nat. Rev. Gastroenterol. Hepatol. 2019 16 6 361 375 10.1038/s41575‑019‑0126‑x 30886395
    [Google Scholar]
  27. Vodenkova S. Buchler T. Cervena K. Veskrnova V. Vodicka P. Vymetalkova V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther. 2020 206 107447 10.1016/j.pharmthera.2019.107447 31756363
    [Google Scholar]
  28. Singh N. Baby D. Rajguru J. Patil P. Thakkannavar S. Pujari V. Inflammation and cancer. Ann. Afr. Med. 2019 18 3 121 126 10.4103/aam.aam_56_18 31417011
    [Google Scholar]
  29. Taniguchi K. Karin M. NF-κB, inflammation, immunity and cancer: Coming of age. Nat. Rev. Immunol. 2018 18 5 309 324 10.1038/nri.2017.142 29379212
    [Google Scholar]
  30. Tuomisto A.E. Mäkinen M.J. Väyrynen J.P. Systemic inflammation in colorectal cancer: Underlying factors, effects, and prognostic significance. World J. Gastroenterol. 2019 25 31 4383 4404 10.3748/wjg.v25.i31.4383 31496619
    [Google Scholar]
  31. Durante G. Protein calorie malnutrition, nutritional intervention and personalized cancer care 2017 8 14 24009 24030 10.18632/oncotarget.15103 28177923
    [Google Scholar]
  32. Yamamoto T. Kawada K. Obama K. Inflammation-related biomarkers for the prediction of prognosis in colorectal cancer patients. Int. J. Mol. Sci. 2021 22 15 8002 10.3390/ijms22158002 34360768
    [Google Scholar]
  33. Lichtenstern C.R. Ngu R.K. Shalapour S. Karin M. Immunotherapy, inflammation and colorectal cancer. Cells 2020 9 3 618 10.3390/cells9030618 32143413
    [Google Scholar]
  34. East J.E. Dekker E. A new focus for CRC prevention—more serration, less inflammation. Nat. Rev. Gastroenterol. Hepatol. 2013 10 2 69 70 10.1038/nrgastro.2012.245 23296243
    [Google Scholar]
  35. Zhong J. Zong S. Wang J. Feng M. Wang J. Zhang H. Xiong L. Role of neutrophils on cancer cells and other immune cells in the tumor microenvironment. Biochim. Biophys. Acta Mol. Cell Res. 2023 1870 7 119493 10.1016/j.bbamcr.2023.119493 37201766
    [Google Scholar]
  36. Dalal N. Jalandra R. Bayal N. Yadav A.K. Harshulika Sharma M. Makharia G.K. Kumar P. Singh R. Solanki P.R. Kumar A. Gut microbiota-derived metabolites in CRC progression and causation. J. Cancer Res. Clin. Oncol. 2021 147 11 3141 3155 10.1007/s00432‑021‑03729‑w 34273006
    [Google Scholar]
  37. Newsholme P. Cruzat V.F. Keane K.N. Carlessi R. Bittencourt d.P.I.H. Jr Molecular mechanisms of ROS production and oxidative stress in diabetes. Biochem. J. 2016 473 24 4527 4550 10.1042/BCJ20160503C 27941030
    [Google Scholar]
  38. Cieślar-Pobuda A. Yue J. Lee H-C. Skonieczna M. Wei Y-H. ROS and oxidative stress in stem cells. Oxid. Med. Cell. Longev. 2017 2017 5047168 10.1155/2017/5047168 29018510
    [Google Scholar]
  39. Farooq M.A. Niazi A.K. Akhtar J. Saifullah Farooq M. Souri Z. Karimi N. Rengel Z. Acquiring control: The evolution of ROS-Induced oxidative stress and redox signaling pathways in plant stress responses. Plant Physiol. Biochem. 2019 141 353 369 10.1016/j.plaphy.2019.04.039 31207496
    [Google Scholar]
  40. Xian D. Lai R. Song J. Xiong X. Zhong J. Emerging perspective: Role of increased ROS and redox imbalance in skin carcinogenesis. Oxid. Med. Cell. Longev. 2019 2019 1 11 10.1155/2019/8127362 31636809
    [Google Scholar]
  41. Sahoo B.M. Banik B.K. Borah P. Jain A. Reactive oxygen species (ROS): Key components in cancer therapies. Anticancer Agents Med. Chem. 2022 Vol. 22 215 222 10.2174/1871520621666210608095512 34102991
    [Google Scholar]
  42. Farmer E.E. Mueller M.J. ROS-mediated lipid peroxidation and RES-activated signaling. Annu. Rev. Plant Biol. 2013 64 1 429 450 10.1146/annurev‑arplant‑050312‑120132 23451784
    [Google Scholar]
  43. Su L.J. Zhang J.H. Gomez H. Murugan R. Hong X. Xu D. Jiang F. Peng Z.Y. Reactive oxygen species‐induced lipid peroxidation in apoptosis, Autophagy, And ferroptosis. Oxid. Med. Cell. Longev. 2019 2019 1 13 10.1155/2019/5080843 31737171
    [Google Scholar]
  44. Jomova K. Raptova R. Alomar S.Y. Alwasel S.H. Nepovimova E. Kuca K. Valko M. Reactive oxygen species, Toxicity, Oxidative stress,And antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023 97 10 2499 2574 10.1007/s00204‑023‑03562‑9 37597078
    [Google Scholar]
  45. Pivetta T.P. Silva L.B. Kawakami C.M. Araújo M.M. Lama D.M.P.F.M. Naal R.M.Z.G. Maria-Engler S.S. Gaspar L.R. Marcato P.D. Topical formulation of quercetin encapsulated in natural lipid nanocarriers: Evaluation of biological properties and phototoxic effect. J. Drug Deliv. Sci. Technol. 2019 53 101148 10.1016/j.jddst.2019.101148
    [Google Scholar]
  46. Kendre P.N. Pande V.V. Chavan K.M. Novel formulation strategy to enhance solubility of quercetin. Pharmacophore 2014 5 358 370
    [Google Scholar]
  47. Rodríguez-Félix F. Del-Toro-Sánchez C.L. Javier Cinco-Moroyoqui F. Juárez J. Ruiz-Cruz S. López-Ahumada G.A. Carvajal-Millan E. Castro-Enríquez D.D. Barreras-Urbina C.G. Tapia-Hernández J.A. Preparation and characterization of quercetin‐loaded zein nanoparticles by electrospraying and study of in vitro bioavailability. J. Food Sci. 2019 84 10 2883 2897 10.1111/1750‑3841.14803 31553062
    [Google Scholar]
  48. Ferreira M. Gomes D. Neto M. Passarinha L.A. Costa D. Sousa Â. Development and characterization of quercetin-loaded delivery systems for increasing its bioavailability in cervical cancer cells. Pharmaceutics 2023 15 3 936 10.3390/pharmaceutics15030936 36986797
    [Google Scholar]
  49. Neamtu A.A. Maghiar T.A. Alaya A. Olah N.K. Turcus V. Pelea D. Totolici B.D. Neamtu C. Maghiar A.M. Mathe E. A comprehensive view on the quercetin impact on colorectal cancer. Molecules 2022 27 6 1873 10.3390/molecules27061873 35335239
    [Google Scholar]
  50. Catalán M. Ferreira J. Carrasco-Pozo C. The microbiota-derived metabolite of quercetin, 3, 4-dihydroxyphenylacetic acid prevents malignant transformation and mitochondrial dysfunction induced by hemin in colon cancer and normal colon epithelia cell lines. Molecules 2020 25 18 4138 10.3390/molecules25184138 32927689
    [Google Scholar]
  51. Almaghrabi O.A. Molecular and biochemical investigations on the effect of quercetin on oxidative stress induced by cisplatin in rat kidney. Saudi J. Biol. Sci. 2015 22 2 227 231 10.1016/j.sjbs.2014.12.008 25737657
    [Google Scholar]
  52. Vafadar A. Shabaninejad Z. Movahedpour A. Fallahi F. Taghavipour M. Ghasemi Y. Akbari M. Shafiee A. Hajighadimi S. Moradizarmehri S. Razi E. Savardashtaki A. Mirzaei H. Quercetin and cancer: New insights into its therapeutic effects on ovarian cancer cells. Cell Biosci. 2020 10 1 32 10.1186/s13578‑020‑00397‑0 32175075
    [Google Scholar]
  53. Sun D. Zou Y. Song L. Han S. Yang H. Chu D. Dai Y. Ma J. O’Driscoll C.M. Yu Z. Guo J. A cyclodextrin-based nanoformulation achieves co-delivery of ginsenoside Rg3 and quercetin for chemo-immunotherapy in colorectal cancer. Acta Pharm. Sin. B 2022 12 1 378 393 10.1016/j.apsb.2021.06.005 35127393
    [Google Scholar]
  54. Lu J. Wang Z. Li S. Xin Q. Yuan M. Li H. Song X. Gao H. Pervaiz N. Sun X. Lv W. Jing T. Zhu Y. Quercetin inhibits the migration and invasion of HCCLM3 cells by suppressing the expression of p-Akt1, matrix metalloproteinase (MMP) MMP-2, and MMP-9. Med. Sci. Monit. 2018 24 2583 2589 10.12659/MSM.906172 29701200
    [Google Scholar]
  55. Trinh N.T. Nguyen T.M.N. Yook J.I. Ahn S.G. Kim S.A. Quercetin and quercitrin from Agrimonia pilosa Ledeb inhibit the migration and invasion of colon cancer cells through the JNK signaling pathway. Pharmaceuticals 2022 15 3 364 10.3390/ph15030364 35337161
    [Google Scholar]
  56. Baghel S.S. Shrivastava N. Baghel R.S. Agrawal P. Rajput S. A review of quercetin: Antioxidant and anticancer properties. World J. Pharm. Pharm. Sci. 2012 1 146 160
    [Google Scholar]
  57. Lesjak M. Beara I. Simin N. Pintać D. Majkić T. Bekvalac K. Orčić D. Mimica-Dukić N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods 2018 40 68 75 10.1016/j.jff.2017.10.047
    [Google Scholar]
  58. Delgado L. Fernandes I. González-Manzano S. Freitas d.V. Mateus N. Santos-Buelga C. Anti-proliferative effects of quercetin and catechin metabolites. Food Funct. 2014 5 4 797 803 10.1039/c3fo60441a 24573487
    [Google Scholar]
  59. Zhang H. Zhang M. Yu L. Zhao Y. He N. Yang X. Antitumor activities of quercetin and quercetin-5′,8-disulfonate in human colon and breast cancer cell lines. Food Chem. Toxicol. 2012 50 5 1589 1599 10.1016/j.fct.2012.01.025 22310237
    [Google Scholar]
  60. Bulzomi P. Galluzzo P. Bolli A. Leone S. Acconcia F. Marino M. The pro‐apoptotic effect of quercetin in cancer cell lines requires ERβ‐dependent signals. J. Cell. Physiol. 2012 227 5 1891 1898 10.1002/jcp.22917 21732360
    [Google Scholar]
  61. Kim H.J. Kim S.K. Kim B.S. Lee S.H. Park Y.S. Park B.K. Kim S.J. Kim J. Choi C. Kim J.S. Cho S.D. Jung J.W. Roh K.H. Kang K.S. Jung J.Y. Apoptotic effect of quercetin on HT-29 colon cancer cells via the AMPK signaling pathway. J. Agric. Food Chem. 2010 58 15 8643 8650 10.1021/jf101510z 20681654
    [Google Scholar]
  62. Chen B. Wu L. Tang X. Wang T. Wang S. Yu H. Wan G. Xie M. Zhang R. Xiao H. Deng W. RETRACTED: Quercetin inhibits tumorigenesis of colorectal cancer through downregulation of hsa_circ_0006990. Front. Pharmacol. 2022 13 874696 10.3389/fphar.2022.874696 35662705
    [Google Scholar]
  63. Amado N. Predes D. Moreno M. Carvalho I. Mendes F. Abreu J. Flavonoids and Wnt/β-catenin signaling: Potential role in colorectal cancer therapies. Int. J. Mol. Sci. 2014 15 7 12094 12106 10.3390/ijms150712094 25007066
    [Google Scholar]
  64. Pashirzad M. Johnston T.P. Sahebkar A. Therapeutic effects of polyphenols on the treatment of colorectal cancer by regulating wnt β-Catenin signaling pathway. J. Oncol. 2021 2021 1 12 10.1155/2021/3619510 34621313
    [Google Scholar]
  65. Hashemzaei M. Far A.D. Yari A. Heravi R.E. Tabrizian K. Taghdisi S.M. Sadegh S.E. Tsarouhas K. Kouretas D. Tzanakakis G. Nikitovic D. Anisimov N.Y. Spandidos D.A. Tsatsakis A.M. Rezaee R. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo . Oncol. Rep. 2017 38 2 819 828 10.3892/or.2017.5766 28677813
    [Google Scholar]
  66. Dong Y. Lei J. Zhang B. Effects of dietary quercetin on the antioxidative status and cecal microbiota in broiler chickens fed with oxidized oil. Poult. Sci. 2020 99 10 4892 4903 10.1016/j.psj.2020.06.028 32988526
    [Google Scholar]
  67. Qiu D. Yan X. Xiao X. Zhang G. Wang Y. Cao J. Ma R. Hong S. Ma M. To explore immune synergistic function of Quercetin in inhibiting breast cancer cells. Cancer Cell Int. 2021 21 1 632 10.1186/s12935‑021‑02345‑5 34838003
    [Google Scholar]
  68. Yang Y. Wang T. Chen D. Ma Q. Zheng Y. Liao S. Wang Y. Zhang J. Quercetin preferentially induces apoptosis in KRAS‐mutant colorectal cancer cells via JNK signaling pathways. Cell Biol. Int. 2019 43 2 117 124 10.1002/cbin.11055 30203888
    [Google Scholar]
  69. Adorisio S. Argentieri M.P. Avato P. Caderni G. Chioccioli S. Cirmi S. Delfino D.V. Greco G. Hrelia P. Iriti M. Lenzi M. Lombardo G.E. Luceri C. Maugeri A. Montopoli M. Muscari I. Nani M.F. Navarra M. Gasperini S. Turrini E. Fimognari C. The molecular basis of the anticancer properties of quercetin. Pharmadvances 2021 3 3 496 520 10.36118/pharmadvances.2021.10
    [Google Scholar]
  70. Benito I. Encío I.J. Milagro F.I. Alfaro M. Martínez-Peñuela A. Barajas M. Marzo F. Microencapsulated Bifidobacterium bifidum and Lactobacillus gasseri in combination with Quercetin inhibit colorectal cancer development in ApcMin/+ mice. Int. J. Mol. Sci. 2021 22 9 4906 10.3390/ijms22094906 34063173
    [Google Scholar]
  71. Jia L. Huang S. Yin X. Zan Y. Guo Y. Han L. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci. 2018 208 123 130 10.1016/j.lfs.2018.07.027 30025823
    [Google Scholar]
  72. Fang J. Zhang S. Xue X. Zhu X. Song S. Wang B. Jiang L. Qin M. Liang H. Gao L. Quercetin and doxorubicin co-delivery using mesoporous silica nanoparticles enhance the efficacy of gastric carcinoma chemotherapy. Int. J. Nanomed. 2018 13 5113 5126 10.2147/IJN.S170862 30233175
    [Google Scholar]
  73. Zhou Y. Zhang J. Wang K. Han W. Wang X. Gao M. Wang Z. Sun Y. Yan H. Zhang H. Xu X. Yang D.H. Quercetin overcomes colon cancer cells resistance to chemotherapy by inhibiting solute carrier family 1, member 5 transporter. Eur. J. Pharmacol. 2020 881 173185 10.1016/j.ejphar.2020.173185 32422185
    [Google Scholar]
  74. Maugeri A. Calderaro A. Patanè G.T. Navarra M. Barreca D. Cirmi S. Felice M.R. Targets involved in the anti-cancer activity of quercetin in breast, colorectal and liver neoplasms. Int. J. Mol. Sci. 2023 24 3 2952 10.3390/ijms24032952 36769274
    [Google Scholar]
  75. Lee Y.K. Park S.Y. Kim Y.M. Lee W.S. Park O.J. AMP kinase/cyclooxygenase-2 pathway regulates proliferation and apoptosis of cancer cells treated with quercetin. Exp. Mol. Med. 2009 41 3 201 207 10.3858/emm.2009.41.3.023 19293639
    [Google Scholar]
  76. Zhao P. Hu Z. Ma W. Zang L. Tian Z. Hou Q. Quercetin alleviates hyperthyroidism‐induced liver damage via Nrf2 Signaling pathway. Biofactors 2020 46 4 608 619 10.1002/biof.1626 32078205
    [Google Scholar]
  77. Lee S. H. Kim I.-S. Park S. Y. Park O. J. Kim Y. M. Quercetin induces apoptosis via regulation of mTOR-VASP signaling pathway in HT-29 colon cancer cells 2011 16 4 340 347
    [Google Scholar]
  78. Mawalizadeh F. Mohammadzadeh G. Khedri A. Rashidi M. Quercetin potentiates the chemosensitivity of MCF-7 breast cancer cells to 5-fluorouracil. Mol. Biol. Rep. 2021 48 12 7733 7742 10.1007/s11033‑021‑06782‑3 34637097
    [Google Scholar]
  79. Sanaei A. Mohammadzadeh G. Rashidi M. Quercetin improves the anti-angiogenic property of 5-fluorouracil on the human umbilical vein endothelial cells huvec cell line 2022 14 12 1685 10.3390/life14121685
    [Google Scholar]
  80. Wang L. Lee I.M. Zhang S.M. Blumberg J.B. Buring J.E. Sesso H.D. Dietary intake of selected flavonols, flavones, and flavonoid-rich foods and risk of cancer in middle-aged and older women. Am. J. Clin. Nutr. 2009 89 3 905 912 10.3945/ajcn.2008.26913 19158208
    [Google Scholar]
  81. Wu H. Pan L. Gao C. Xu H. Li Y. Zhang L. Ma L. Meng L. Sun X. Qin H. Quercetin inhibits the proliferation of glycolysis-addicted HCC cells by reducing hexokinase 2 and Akt-mTOR pathway. Molecules 2019 24 10 1993 10.3390/molecules24101993 31137633
    [Google Scholar]
  82. Hee S.L. In-Seop K. Yi S.P. Jin O.P. Quercetin induces apoptosis via regulation of mTOR-VASP signaling pathway in HT-29 colon cancer cells. J. Cancer Prev. 2011 16 340 347
    [Google Scholar]
  83. Carrillo-Martinez E.J. Flores-Hernández F.Y. Salazar-Montes A.M. Nario-Chaidez H.F. Hernández-Ortega L.D. Quercetin, A flavonoid with great pharmacological capacity. Molecules 2024 29 5 1000 10.3390/molecules29051000 38474512
    [Google Scholar]
  84. Hussain Y. Mirzaei S. Ashrafizadeh M. Zarrabi A. Hushmandi K. Khan H. Daglia M. Quercetin and its nano-scale delivery systems in prostate cancer therapy: Paving the way for cancer elimination and reversing chemoresistance. Cancers 2021 13 7 1602 10.3390/cancers13071602 33807174
    [Google Scholar]
  85. Askar M.A. El-Nashar H.A.S. Al-Azzawi M.A. Rahman S.S.A. Elshawi O.E. Synergistic effect of quercetin magnetite nanoparticles and targeted radiotherapy in treatment of breast cancer. Breast Cancer 2022 16 11782234221086728 10.1177/11782234221086728 35359610
    [Google Scholar]
  86. Li Y. Wang Z. Jin J. Zhu S.X. He G.Q. Li S.H. Wang J. Cai Y. Quercetin pretreatment enhances the radiosensitivity of colon cancer cells by targeting Notch-1 pathway. Biochem. Biophys. Res. Commun. 2020 523 4 947 953 10.1016/j.bbrc.2020.01.048 31964531
    [Google Scholar]
  87. Zang X. Cheng M. Zhang X. Chen X. Quercetin nanoformulations:A promising strategy for tumor therapy. Food Funct. 2021 12 15 6664 6681 10.1039/D1FO00851J 34152346
    [Google Scholar]
  88. Farag M.R. Moselhy A.A.A. El-Mleeh A. Aljuaydi S.H. Ismail T.A. Cerbo D.A. Crescenzo G. Abou-Zeid S.M. Quercetin alleviates the immunotoxic impact mediated by oxidative stress and inflammation induced by doxorubicin exposure in rats. Antioxidants 2021 10 12 1906 10.3390/antiox10121906 34943009
    [Google Scholar]
  89. Tan R.Z. Wang C. Deng C. Zhong X. Yan Y. Luo Y. Lan H.Y. He T. Wang L. Quercetin protects against cisplatin‐induced acute kidney injury by inhibiting Mincle/Syk/NF‐κB signaling maintained macrophage inflammation. Phytother. Res. 2020 34 1 139 152 10.1002/ptr.6507 31497913
    [Google Scholar]
  90. Sánchez-González P.D. López-Hernández F.J. Dueñas M. Prieto M. Sánchez-López E. Thomale J. Ruiz-Ortega M. López-Novoa J.M. Morales A.I. Differential effect of quercetin on cisplatin-induced toxicity in kidney and tumor tissues. Food Chem. Toxicol. 2017 107 Pt A 226 236 10.1016/j.fct.2017.06.047 28669851
    [Google Scholar]
  91. Behling E.B. Sendão M.C. Francescato H.D. Antunes L.M. Costa R.S. Bianchi Mde.L. Comparative study of multiple dosage of quercetin against cisplatin-induced nephrotoxicity and oxidative stress in rat kidneys. Pharmacol. Rep. 2006 58 4 526 532 16963799
    [Google Scholar]
  92. Langner E. Lemieszek M.K. Rzeski W. Lycopene, sulforaphane, quercetin, And curcumin applied together show improved antiproliferative potential in colon cancer cells in vitro. J. Food Biochem. 2019 43 4 e12802 10.1111/jfbc.12802 31353575
    [Google Scholar]
  93. Hardie D.G. Carling D. Carlson M. The AMP-activated/SNF1 protein kinase subfamily: Metabolic sensors of the eukaryotic cell? Annu. Rev. Biochem. 1998 67 1 821 855 10.1146/annurev.biochem.67.1.821 9759505
    [Google Scholar]
  94. Wu S. Xie J. Shi H. Wang Z. miR-492 promotes chemoresistance to CDDP and metastasis by targeting inhibiting DNMT3B and induces stemness in gastric cancer. Biosci. Rep. 2020 40 3 BSR20194342 10.1042/BSR20194342 32065219
    [Google Scholar]
  95. Kim H.S. Wannatung T. Lee S. Yang W.K. Chung S.H. Lim J.S. Choe W. Kang I. Kim S.S. Ha J. Quercetin enhances hypoxia-mediated apoptosis via direct inhibition of AMPK activity in HCT116 colon cancer. Apoptosis 2012 17 9 938 949 10.1007/s10495‑012‑0719‑0 22684842
    [Google Scholar]
  96. Huang C. Chen T. Zhu D. Huang Q. Enhanced tumor targeting and radiotherapy by quercetin loaded biomimetic nanoparticles. Front Chem. 2020 8 225 10.3389/fchem.2020.00225 32296682
    [Google Scholar]
  97. Redondo-Blanco S. Fernández J. Gutiérrez-del-Río I. Villar C.J. Lombó F. New insights toward colorectal cancer chemotherapy using natural bioactive compounds. Front. Pharmacol. 2017 8 109 10.3389/fphar.2017.00109 28352231
    [Google Scholar]
  98. Asgharian P. Tazekand A.P. Hosseini K. Forouhandeh H. Ghasemnejad T. Ranjbar M. Hasan M. Kumar M. Beirami S.M. Tarhriz V. Soofiyani S.R. Kozhamzharova L. Sharifi-Rad J. Calina D. Cho W.C. Potential mechanisms of quercetin in cancer prevention: Focus on cellular and molecular targets. Cancer Cell Int. 2022 22 1 257 10.1186/s12935‑022‑02677‑w 35971151
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206354948250226103832
Loading
/content/journals/acamc/10.2174/0118715206354948250226103832
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: oxidative stress ; quercetin ; inflammation ; therapy ; Colorectal cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test