Skip to content
2000
image of Melittin, A Potential Game-changer in the Fight Against Breast Cancer: A Systematic Review

Abstract

Introduction

Breast cancer is the most common cancer in women. Traditional treatments include endocrine therapy, chemotherapy, surgery, radiation, and immunotherapy. Recent studies suggest melittin, a component of bee venom, as a promising breast cancer treatment due to its anticancer properties: inducing cytotoxicity, apoptosis, and gene regulation.

Method

This manuscript aims to review melittin's potential therapeutical and future implications in treating breast cancer. An extensive literature search was conducted on MEDLINE and Cochrane databases up to July 2024 using Boolean operators with a combination of keywords. After screening, data extraction, and descriptive analysis, 40 articles were retained.

Results

Experimental data and different therapeutical strategies were collected. Melittin disrupts tumor cell membranes and modulates key apoptotic pathways. Advanced delivery systems enhance their effectiveness and reduce toxicity. Combining melittin with chemotherapy shows synergistic effects, improving outcomes. Thus, melittin could be a valuable addition to breast cancer therapies.

Conclusion

Further clinical trials are essential to validate its potential and establish its role in breast cancer therapy.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206347581250217045306
2025-02-25
2025-06-16
Loading full text...

Full text loading...

References

  1. Akay M. Kalaycioğlu Z. Kolayli S. Berker B. Comparative determination of melittin by capillary electrophoretic methods. J. Turk. Chem. Soc. A: Chem. 2021 8 4 1211 1216 10.18596/jotcsa.949188
    [Google Scholar]
  2. Cancer Today Data visualization tools for exploring the global cancer burden in 2022. Available from: https://gco.iarc.who.int/today/
  3. Breast cancer. Available from: https://www.who.int/news-room/fact-sheets/detail/breast-cancer
  4. Orrantia-Borunda E. Anchondo-Nuñez P. Acuña-Aguilar L.E. Gómez-Valles F.O. Ramírez-Valdespino C.A. Subtypes of breast cancer. Breast Cancer Exon Publications Brisbane (AU) 2022
    [Google Scholar]
  5. Loibl S. Poortmans P. Morrow M. Denkert C. Curigliano G. Breast cancer. Lancet 2021 397 10286 1750 1769 10.1016/S0140‑6736(20)32381‑3 33812473
    [Google Scholar]
  6. Kwon N.Y. Sung S.H. Sung H.K. Park J.K. Anticancer activity of bee venom components against breast cancer. Toxins 2022 14 7 460 10.3390/toxins14070460 35878198
    [Google Scholar]
  7. Chen J. Guan S.M. Sun W. Fu H. Melittin, the major pain-producing substance of bee venom. Neurosci. Bull. 2016 32 3 265 272 10.1007/s12264‑016‑0024‑y 26983715
    [Google Scholar]
  8. Wehbe R. Frangieh J. Rima M. El Obeid D. Sabatier J.M. Fajloun Z. Bee venom: Overview of main compounds and bioactivities for therapeutic interests. Molecules 2019 24 16 2997 10.3390/molecules24162997 31430861
    [Google Scholar]
  9. Haque S. Melittin: A possible regulator of cancer proliferation in preclinical cell culture and animal models. J. Cancer Res. Clin. Oncol. 2023 149 17709 17726 10.1007/s00432‑023‑05458‑8
    [Google Scholar]
  10. Pandey P. Khan F. Khan M.A. Kumar R. Upadhyay T.K. An updated review summarizing the anticancer efficacy of melittin from bee venom in several models of human cancers. Nutrients 2023 15 14 3111 10.3390/nu15143111 37513529
    [Google Scholar]
  11. Moga M. Dimienescu O. Arvătescu C. Ifteni P. Pleş L. Anticancer activity of toxins from bee and snake venom—an overview on ovarian cancer. Molecules 2018 23 3 692 10.3390/molecules23030692 29562696
    [Google Scholar]
  12. LeBeau A.M. Brennen W.N. Aggarwal S. Denmeade S.R. Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin. Mol. Cancer Ther. 2009 8 5 1378 1386 10.1158/1535‑7163.MCT‑08‑1170 19417147
    [Google Scholar]
  13. Li B. Gu W. Zhang C. Huang X.Q. Han K.Q. Ling C.Q. Growth arrest and apoptosis of the human hepatocellular carcinoma cell line BEL-7402 induced by melittin. Onkologie 2006 29 8-9 367 371 16974113
    [Google Scholar]
  14. Sobral F. Sampaio A. Falcão S. Queiroz M.J.R.P. Calhelha R.C. Vilas-Boas M. Ferreira I.C.F.R. Chemical characterization, antioxidant, anti-inflammatory and cytotoxic properties of bee venom collected in Northeast Portugal. Food Chem. Toxicol. 2016 94 172 177 10.1016/j.fct.2016.06.008 27288930
    [Google Scholar]
  15. Salama M.A. Younis M.A. Talaat R.M. Cytokine and inflammatory mediators are associated with cytotoxic, anti-inflammatory and apoptotic activity of honeybee venom. J. Complement. Integr. Med. 2021 18 1 75 86 10.1515/jcim‑2019‑0182 32452823
    [Google Scholar]
  16. Jung G.B. Huh J.E. Lee H.J. Kim D. Lee G.J. Park H.K. Lee J.D. Anti-cancer effect of bee venom on human MDA-MB-231 breast cancer cells using Raman spectroscopy. Biomed. Opt. Express 2018 9 11 5703 5718 10.1364/BOE.9.005703 30460157
    [Google Scholar]
  17. Sevin S. Deveci Ozkan A. Tutun H. Kivrak I. Turna O. Guney Eskiler G. Determination of the effects of bee venom on triple negative breast cancer cells in vitro. Chem. Biodivers. 2023 20 3 e202201263 10.1002/cbdv.202201263 36806913
    [Google Scholar]
  18. Jeong Y.J. Choi Y. Shin J.M. Cho H.J. Kang J.H. Park K.K. Choe J.Y. Bae Y.S. Han S.M. Kim C.H. Chang H.W. Chang Y.C. Melittin suppresses EGF-induced cell motility and invasion by inhibiting PI3K/Akt/mTOR signaling pathway in breast cancer cells. Food Chem. Toxicol. 2014 68 218 225 10.1016/j.fct.2014.03.022 24675423
    [Google Scholar]
  19. Khorsand-Dehkordi S. Doosti A. Upregulation of EPSTI1/Drp1/AKT1 signaling pathways using pDNA/Melittin against breast cancer. Biochem. Genet. 2024 10.1007/s10528‑024‑10806‑5 38722433
    [Google Scholar]
  20. Mir Hassani Z. Nabiuni M. Parivar K. Abdirad S. Karimzadeh L. Melittin inhibits the expression of key genes involved in tumor microenvironment formation by suppressing HIF-1α signaling in breast cancer cells. Med. Oncol. 2021 38 7 77 10.1007/s12032‑021‑01526‑6 34076777
    [Google Scholar]
  21. Bahreyni A. Liu H. Mohamud Y. Xue Y.C. Fan Y.M. Zhang Y.L. Luo H. A combination of genetically engineered oncolytic virus and melittin-CpG for cancer viro-chemo-immunotherapy. BMC Med. 2023 21 1 193 10.1186/s12916‑023‑02901‑y 37226233
    [Google Scholar]
  22. El Mehdi I. Chemical, cytotoxic, and anti-inflammatory assessment of honey bee venom from Apis mellifera intermissa. Antibiot. 2021 10 12 1514
    [Google Scholar]
  23. Bahreyni A. Mohamud Y. Zhang J. Luo H. Engineering a facile and versatile nanoplatform to facilitate the delivery of multiple agents for targeted breast cancer chemo-immunotherapy. Biomed. Pharmacother. 2023 163 114789 10.1016/j.biopha.2023.114789 37119737
    [Google Scholar]
  24. Bai L. Liu H. You R. Jiang X. Zhang T. Li Y. Shan T. Qian Z. Wang Y. Liu Y. Li C. Combination nano-delivery systems remodel the immunosuppressive tumor microenvironment for metastatic triple-negative breast cancer therapy. Mol. Pharm. 2024 21 5 2148 2162 10.1021/acs.molpharmaceut.3c00242 38536949
    [Google Scholar]
  25. Duarte D. Falcão S.I. El Mehdi I. Vilas-Boas M. Vale N. Honeybee venom synergistically enhances the cytotoxic effect of CNS drugs in HT-29 colon and MCF-7 breast cancer cell lines. Pharmaceutics 2022 14 3 511 10.3390/pharmaceutics14030511 35335887
    [Google Scholar]
  26. Li Q. Shi Z. Ou M. Li Z. Luo M. Wu M. Dong X. Lu L. Lv F. Zhang F. Mei L. pH-labile artificial natural killer cells for overcoming tumor drug resistance. J. Control. Release 2022 352 450 458 10.1016/j.jconrel.2022.10.042 36341929
    [Google Scholar]
  27. Duffy C. Sorolla A. Wang E. Golden E. Woodward E. Davern K. Ho D. Johnstone E. Pfleger K. Redfern A. Iyer K.S. Baer B. Blancafort P. Honeybee venom and melittin suppress growth factor receptor activation in HER2-enriched and triple-negative breast cancer. NPJ Precis. Oncol. 2020 4 1 24 10.1038/s41698‑020‑00129‑0 32923684
    [Google Scholar]
  28. Khamis A.A. Ali E.M.M. Salim E.I. El-Moneim M.A.A. Synergistic effects of bee venom, hesperidin, and piperine with tamoxifen on apoptotic and angiogenesis biomarker molecules against xerographic MCF-7 injected rats. Sci. Rep. 2024 14 1 1510 10.1038/s41598‑023‑50729‑6 38233443
    [Google Scholar]
  29. Khamis A.A.A. Ali E.M.M. El-Moneim M.A.A. Abd-Alhaseeb M.M. El-Magd M.A. Salim E.I. Hesperidin, piperine and bee venom synergistically potentiate the anticancer effect of tamoxifen against breast cancer cells. Biomed. Pharmacother. 2018 105 1335 1343 10.1016/j.biopha.2018.06.105 30021371
    [Google Scholar]
  30. Shaw P. Kumar N. Hammerschmid D. Privat-Maldonado A. Dewilde S. Bogaerts A. Synergistic effects of melittin and plasma treatment: A promising approach for cancer therapy. Cancers 2019 11 8 1109 10.3390/cancers11081109 31382579
    [Google Scholar]
  31. Pinto M. B. Bee venom-loaded niosomes as innovative platforms for cancer treatment: Development and therapeutical efficacy and safety evaluation. Pharm. Basel 2024 17 5 572
    [Google Scholar]
  32. Hussein M.M.A. Abdelfattah-Hassan A. Eldoumani H. Essawi W.M. Alsahli T.G. Alharbi K.S. Alzarea S.I. Al-Hejaili H.Y. Gaafar S.F. Evaluation of anti-cancer effects of carnosine and melittin-loaded niosomes in MCF-7 and MDA-MB-231 breast cancer cells. Front. Pharmacol. 2023 14 1258387 10.3389/fphar.2023.1258387 37808196
    [Google Scholar]
  33. Raveendran R. Chen F. Kent B. Stenzel M.H. Estrone-decorated polyion complex micelles for targeted melittin delivery to hormone-responsive breast cancer cells. Biomacromolecules 2020 21 3 1222 1233 10.1021/acs.biomac.9b01681 32022540
    [Google Scholar]
  34. Dai Y. Yu X. Leng Y. Peng X. Wang J. Zhao Y. Chen J. Zhang Z. Effective treatment of metastatic sentinel lymph nodes by dual-targeting melittin nanoparticles. J. Nanobiotechnology 2023 21 1 245 10.1186/s12951‑023‑02026‑7 37528426
    [Google Scholar]
  35. Zhou Y. Zhang S. Chen Z. Bao Y. Chen A.T. Sheu W.C. Liu F. Jiang Z. Zhou J. Targeted delivery of secretory promelittin via novel Poly(lactone‐ co ‐β‐amino ester) nanoparticles for treatment of breast cancer brain metastases. Adv. Sci. 2020 7 5 1901866 10.1002/advs.201901866 32154067
    [Google Scholar]
  36. Gribenko A.V. Guzmán-Casado M. Lopez M.M. Makhatadze G.I. Conformational and thermodynamic properties of peptide binding to the human S100P protein. Protein Sci. 2002 11 6 1367 1375 10.1110/ps.0202202 12021435
    [Google Scholar]
  37. Soman N.R. Baldwin S.L. Hu G. Marsh J.N. Lanza G.M. Heuser J.E. Arbeit J.M. Wickline S.A. Schlesinger P.H. Molecularly targeted nanocarriers deliver the cytolytic peptide melittin specifically to tumor cells in mice, reducing tumor growth. J. Clin. Invest. 2009 119 9 2830 2842 10.1172/JCI38842 19726870
    [Google Scholar]
  38. Yang L. Cui F. Shi K. Cun D. Wang R. Design of high payload PLGA nanoparticles containing melittin/sodium dodecyl sulfate complex by the hydrophobic ion-pairing technique. Drug Dev. Ind. Pharm. 2009 35 8 959 968 10.1080/03639040902718039 19274512
    [Google Scholar]
  39. Cho H.J. Jeong Y.J. Park K.K. Park Y.Y. Chung I.K. Lee K.G. Yeo J.H. Han S.M. Bae Y.S. Chang Y.C. Bee venom suppresses PMA-mediated MMP-9 gene activation via JNK/p38 and NF-κB-dependent mechanisms. J. Ethnopharmacol. 2010 127 3 662 668 10.1016/j.jep.2009.12.007 19969058
    [Google Scholar]
  40. Armbrecht L. Gabernet G. Kurth F. Hiss J.A. Schneider G. Dittrich P.S. Characterisation of anticancer peptides at the single-cell level. Lab Chip 2017 17 17 2933 2940 10.1039/C7LC00505A 28736788
    [Google Scholar]
  41. Daniluk K. Use of selected carbon nanoparticles as melittin carriers for MCF-7 and MDA-MB-231 human breast cancer cells. Materials Basel 2019 13 1 90
    [Google Scholar]
  42. Daniluk K. Lange A. Pruchniewski M. Małolepszy A. Sawosz E. Jaworski S. Delivery of melittin as a lytic agent via graphene nanoparticles as carriers to breast cancer cells. J. Funct. Biomater. 2022 13 4 278 10.3390/jfb13040278 36547538
    [Google Scholar]
  43. Daniluk K. Lange A. Wójcik B. Zawadzka K. Bałaban J. Kutwin M. Jaworski S. Effect of melittin complexes with graphene and graphene oxide on triple-negative breast cancer tumors grown on chicken embryo chorioallantoic membrane. Int. J. Mol. Sci. 2023 24 9 8388 10.3390/ijms24098388 37176095
    [Google Scholar]
  44. Zhang C. Zhang B. Tang C. Shi X. Guo B. Wang F. A ratiometric gene‐switch system for mirna sensing and gene regulation. Small Methods 2024 8 3 2301266 10.1002/smtd.202301266 38009771
    [Google Scholar]
  45. Kim S. Choi I. Han I.H. Bae H. Enhanced therapeutic effect of optimized Melittin-dKLA, a peptide agent targeting m2-like tumor-associated macrophages in triple-negative breast cancer. Int. J. Mol. Sci. 2022 23 24 15751 10.3390/ijms232415751 36555393
    [Google Scholar]
  46. Yu X. Activatable protein nanoparticles for targeted delivery of therapeutic peptides. Adv. Mater. 2018 Feb 30 7 10.1002/adma.201705383
    [Google Scholar]
  47. Jin X. Wu H. Yu J. Cao Y. Zhang L. Zhang Z. Lv H. Glutamate affects self-assembly, protein corona, and anti-4 T1 tumor effects of melittin/vitamin E-succinic acid-(glutamate)n nanoparticles. J. Control. Release 2024 365 802 817 10.1016/j.jconrel.2023.12.013 38092255
    [Google Scholar]
  48. Zhang T. Bai L. You R. Yang M. Chen Q. Cheng Y. Qian Z. Wang Y. Liu Y. Homologous-targeting biomimetic nanoparticles co-loaded with melittin and a photosensitizer for the combination therapy of triple negative breast cancer. J. Mater. Chem. B Mater. Biol. Med. 2024 12 22 5465 5478 10.1039/D3TB02919K 38742364
    [Google Scholar]
  49. Zhao Q. Feng H. Yang Z. Liang J. Jin Z. Chen L. Zhan L. Xuan M. Yan J. Kuang J. Cheng X. Zhao R. Qiu W. The central role of a two‐way positive feedback pathway in molecular targeted therapies‐mediated pyroptosis in anaplastic thyroid cancer. Clin. Transl. Med. 2022 12 2 e727 10.1002/ctm2.727 35184413
    [Google Scholar]
  50. Hartmann A.D. Wilhelm N. Erfle V. Hartmann K. Clinical efficacy of melittin in the treatment of cats infected with the feline immunodeficiency virus. Tierarztl. Prax. Ausg. K Klientiere. Heimtiere 2016 44 6 417 423 27808347
    [Google Scholar]
  51. Choi E. Michalski C.J. Choo S.H. Kim G.N. Banasikowska E. Lee S. Wu K. An H.Y. Mills A. Schneider S. Bredeek U.F. Coulston D.R. Ding S. Finzi A. Tian M. Klein K. Arts E.J. Mann J.F.S. Gao Y. Kang C.Y. First Phase I human clinical trial of a killed whole-HIV-1 vaccine: demonstration of its safety and enhancement of anti-HIV antibody responses. Retrovirology 2016 13 1 82 10.1186/s12977‑016‑0317‑2 27894306
    [Google Scholar]
  52. Koyama N. Hirata K. Hori K. Dan K. Yokota T. Computer-assisted infrared thermographic study of axon reflex induced by intradermal melittin. Pain 2000 84 2 133 139 10.1016/S0304‑3959(99)00192‑X 10666517
    [Google Scholar]
  53. Carter V. Underhill A. Baber I. Sylla L. Baby M. Larget-Thiery I. Zettor A. Bourgouin C. Langel Ü. Faye I. Otvos L. Wade J.D. Coulibaly M.B. Traore S.F. Tripet F. Eggleston P. Hurd H. Killer bee molecules: Antimicrobial peptides as effector molecules to target sporogonic stages of Plasmodium. PLoS Pathog. 2013 9 11 e1003790 10.1371/journal.ppat.1003790 24278025
    [Google Scholar]
  54. Oršolić N. Bee venom in cancer therapy. Cancer Metastasis Rev. 2012 31 1-2 173 194 10.1007/s10555‑011‑9339‑3 22109081
    [Google Scholar]
  55. Gajski G. Garaj-Vrhovac V. Melittin: A lytic peptide with anticancer properties. Environ. Toxicol. Pharmacol. 2013 36 2 697 705 10.1016/j.etap.2013.06.009 23892471
    [Google Scholar]
  56. Raghuraman H. Chattopadhyay A. Melittin: A membrane-active peptide with diverse functions. Biosci. Rep. 2007 27 4-5 189 223 10.1007/s10540‑006‑9030‑z 17139559
    [Google Scholar]
  57. Damianoglou A. Rodger A. Pridmore C. Dafforn T.R. Mosely J.A. Sanderson J.M. Hicks M.R. The synergistic action of melittin and phospholipase A2 with lipid membranes: Development of linear dichroism for membrane-insertion kinetics. Protein Pept. Lett. 2010 17 11 1351 1362 10.2174/0929866511009011351 20673225
    [Google Scholar]
  58. Lyu C. Fang F. Li B. Anti-tumor effects of melittin and its potential applications in clinic. Curr. Protein Pept. Sci. 2019 20 3 240 250 10.2174/1389203719666180612084615 29895240
    [Google Scholar]
  59. Tosteson M.T. Holmes S.J. Razin M. Tosteson D.C. Melittin lysis of red cells. J. Membr. Biol. 1985 87 1 35 44 10.1007/BF01870697 4057243
    [Google Scholar]
  60. DeGrado W.F. Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue. Biophys. J. 37 1 329 338
    [Google Scholar]
  61. Lee G. Bae H. Anti-inflammatory applications of melittin, a major component of bee venom: Detailed mechanism of action and adverse effects. Molecules 2016 21 5 616 10.3390/molecules21050616 27187328
    [Google Scholar]
  62. Sobotka A.K. Allergy to insect stings: II. Phospholipase A: The major allergen in honeybee venom. J. Allergy Clin. Immunol. 1976 57 1 29 40 10.1016/0091‑6749(76)90076‑2
    [Google Scholar]
  63. Paull B.R. Melittin: An allergen of honeybee venom. J. Allergy Clin. Immunol. 1977 59 4 334 338 10.1016/0091‑6749(77)90056‑2
    [Google Scholar]
  64. Gajski G. Melittin induced cytogenetic damage, oxidative stress and changes in gene expression in human peripheral blood lymphocytes. Toxicon 2016 Feb 110 56 67 10.1016/j.toxicon.2015.12.005
    [Google Scholar]
  65. Cathcart-Rake E.J. Tevaarwerk A.J. Haddad T.C. D’Andre S.D. Ruddy K.J. Advances in the care of breast cancer survivors. BMJ 2023 382 e071565 10.1136/bmj‑2022‑071565 37722731
    [Google Scholar]
  66. Di Nardo P. Lisanti C. Garutti M. Buriolla S. Alberti M. Mazzeo R. Puglisi F. Chemotherapy in patients with early breast cancer: Clinical overview and management of long-term side effects. Expert Opin. Drug Saf. 2022 21 11 1341 1355 10.1080/14740338.2022.2151584 36469577
    [Google Scholar]
  67. DeMarco C. Side effects of radiation therapy for breast cancer. 2023 Available from: https://www.mdanderson.org/cancerwise/side-effects-of-radiation-therapy-for-breast-cancer.h00-159615489.html
  68. Taylor C.W. Kirby A.M. Cardiac side-effects from breast cancer radiotherapy. Clin. Oncol. 2015 27 11 621 629 10.1016/j.clon.2015.06.007 26133462
    [Google Scholar]
  69. Al-Dasooqi N. Bowen J.M. Gibson R.J. Sullivan T. Lees J. Keefe D.M. Trastuzumab induces gastrointestinal side effects in HER2-overexpressing breast cancer patients. Invest. New Drugs 2009 27 2 173 178 10.1007/s10637‑008‑9152‑1 18612591
    [Google Scholar]
  70. Hattersley R. Nana M. Lansdown A.J. Endocrine complications of immunotherapies: A review. Clin. Med. 2021 21 2 e212 e222 10.7861/clinmed.2020‑0827 33762389
    [Google Scholar]
  71. American thyroid association. Available from: https://www.thyroid.org/patient-thyroid-information/ct-for-patients/august-2020/vol-13-issue-8-p-5-6/
  72. Hormone therapy for breast cancer. 2022 Available from: https://www.cancer.gov/types/breast/breast-hormone-therapy-fact-sheet
/content/journals/acamc/10.2174/0118715206347581250217045306
Loading
/content/journals/acamc/10.2174/0118715206347581250217045306
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Review Article
Keywords: breast cancer ; Melittin ; therapy ; treatment ; honeybee venom
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test