Skip to content
2000
image of The Function of Poly (U) Binding Splicing Factor 60 (PUF60) in Disease Regulation

Abstract

The alternative splicing (AS) of pre-mRNA is an important process in controlling the expression of human genes, which can enrich the diversity of the proteome and regulate gene function. On the contrary, aberrant splicing contributes significantly to numerous human diseases progression, including tumors, neurological diseases, metabolic diseases, infections, and immune diseases. The PUF60, a protein related to RNA splicing, plays critical functions in RNA splicing and gene transcription regulation. In addition, it can achieve synergistic binding with U2AF65 on RNA through interactions in the pyrimidine region, promoting the splicing of introns with weak 3'- splice sites and pyrimidine bundles. Nevertheless, an increasing amount of evidence supports that it shows a significant overexpression pattern in the vast majority of cancer cells and is crucial for embryonic development, indicating that PUF60 may hold the post of a potential therapeutic target for such diseases. These studies have significantly increased our interest in PUF60. Thus, we briefly reviewed the structural domain characteristics of the PUF60, splicing mutants of PUF60, and the roles and functions in human diseases, including various cancers, infections of bacterium and viruses, myositis, and Verheij syndrome. Furthermore, the targeted PUF60 inhibitors and boundedness of the current research were elaborated on in the article. The article effectively communicates critical perception and insight, making it a precious resource for those interested in PUF60 research and treatment.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206346843241119105519
2025-01-03
2025-04-02
Loading full text...

Full text loading...

References

  1. Wang B.D. Lee N. Aberrant RNA splicing in cancer and drug resistance. Cancers 2018 10 11 458 10.3390/cancers10110458 30463359
    [Google Scholar]
  2. Wang E.T. Sandberg R. Luo S. Khrebtukova I. Zhang L. Mayr C. Kingsmore S.F. Schroth G.P. Burge C.B. Alternative isoform regulation in human tissue transcriptomes. Nature 2008 456 7221 470 476 10.1038/nature07509 18978772
    [Google Scholar]
  3. Jeon J. Kim K.T. Choi J. Cheong K. Ko J. Choi G. Lee H. Lee G.W. Park S.Y. Kim S. Kim S.T. Min C.W. Kang S. Lee Y.H. Alternative splicing diversifies the transcriptome and proteome of the rice blast fungus during host infection. RNA Biol. 2022 19 1 373 386 10.1080/15476286.2022.2043040 35311472
    [Google Scholar]
  4. Will C.L. Lührmann R. Spliceosomal UsnRNP biogenesis, structure and function. Curr. Opin. Cell Biol. 2001 13 3 290 301 10.1016/S0955‑0674(00)00211‑8 11343899
    [Google Scholar]
  5. Wan R. Yan C. Bai R. Wang L. Huang M. Wong C.C.L. Shi Y. The 3.8 Å structure of the U4/U6.U5 tri-snRNP: Insights into spliceosome assembly and catalysis. Science 2016 351 6272 466 475 10.1126/science.aad6466 26743623
    [Google Scholar]
  6. Urbanski L.M. Leclair N. Anczuków O. Alternative‐splicing defects in cancer: Splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. Wiley Interdiscip. Rev. RNA 2018 9 4 e1476 10.1002/wrna.1476 29693319
    [Google Scholar]
  7. Wang X. Hua J. Li J. Zhang J. Dzakah E.E. Cao G. Lin W. Mechanisms of non-coding RNA-modulated alternative splicing in cancer. RNA Biol. 2022 19 1 541 547 10.1080/15476286.2022.2062846
    [Google Scholar]
  8. Hu S. Wang X. Shan G. Insertion of an Alu element in a lncRNA leads to primate-specific modulation of alternative splicing. Nat. Struct. Mol. Biol. 2016 23 11 1011 1019 10.1038/nsmb.3302 27694840
    [Google Scholar]
  9. Wang X. Li J. Bian X. Wu C. Hua J. Chang S. Yu T. Li H. Li Y. Hu S. Shan G. Lin W. CircURI1 interacts with hnRNPM to inhibit metastasis by modulating alternative splicing in gastric cancer. Proc. Natl. Acad. Sci. USA 2021 118 33 e2012881118 10.1073/pnas.2012881118 34385309
    [Google Scholar]
  10. Yang Y. Jia D. Kim H. Abd Elmageed Z.Y. Datta A. Davis R. Srivastav S. Moroz K. Crawford B.E. Moparty K. Thomas R. Hudson R.S. Ambs S. Abdel-Mageed A.B. Dysregulation of miR-212 promotes castration resistance through hnRNPH1-mediated regulation of AR and AR-V7: Implications for racial disparity of prostate cancer. Clin. Cancer Res. 2016 22 7 1744 1756 10.1158/1078‑0432.CCR‑15‑1606 26553749
    [Google Scholar]
  11. PAGE-McCAW P.S. Amonlirdviman K. Sharp P.A. PUF60: A novel U2AF65-related splicing activity. RNA 1999 5 12 1548 1560 10.1017/S1355838299991938 10606266
    [Google Scholar]
  12. Královičová J. Ševčíková I. Stejskalová E. Obuća M. Hiller M. Staněk D. Vořechovský I. PUF60-activated exons uncover altered 3′ splice-site selection by germline missense mutations in a single RRM. Nucleic Acids Res. 2018 46 12 6166 6187 10.1093/nar/gky389 29788428
    [Google Scholar]
  13. Kralovicova J. Borovska I. Kubickova M. Lukavsky P.J. Vorechovsky I. Cancer-associated substitutions in RNA recognition motifs of PUF60 and U2AF65 reveal residues required for correct folding and 3′ splice-ssite sselection. Cancers 2020 12 7 1865 10.3390/cancers12071865 32664474
    [Google Scholar]
  14. Corsini L. Sattler M. Backbone assignment of the UHM domain of Puf60 free and bound to five ligands. Biomol. NMR Assign. 2008 2 2 211 214 10.1007/s12104‑008‑9123‑7 19636907
    [Google Scholar]
  15. Corsini L. Hothorn M. Stier G. Rybin V. Scheffzek K. Gibson T.J. Sattler M. Dimerization and protein binding specificity of the U2AF homology motif of the splicing factor Puf60. J. Biol. Chem. 2009 284 1 630 639 10.1074/jbc.M805395200 18974054
    [Google Scholar]
  16. Loerch S. Maucuer A. Manceau V. Green M.R. Kielkopf C.L. Cancer-relevant splicing factor CAPERα engages the essential splicing factor SF3b155 in a specific ternary complex. J. Biol. Chem. 2014 289 25 17325 17337 10.1074/jbc.M114.558825 24795046
    [Google Scholar]
  17. Hastings M.L. Allemand E. Duelli D.M. Myers M.P. Krainer A.R. Control of pre-mRNA splicing by the general splicing factors PUF60 and U2AF(65). PLoS One 2007 2 6 e538 10.1371/journal.pone.0000538 17579712
    [Google Scholar]
  18. Liu J. He L. Collins I. Ge H. Libutti D. Li J. Egly J.M. Levens D. The FBP interacting repressor targets TFIIH to inhibit activated transcription. Mol. Cell 2000 5 2 331 341 10.1016/S1097‑2765(00)80428‑1 10882074
    [Google Scholar]
  19. Cukier C.D. Hollingworth D. Martin S.R. Kelly G. Díaz-Moreno I. Ramos A. Molecular basis of FIR-mediated c-myc transcriptional control. Nat. Struct. Mol. Biol. 2010 17 9 1058 1064 10.1038/nsmb.1883 20711187
    [Google Scholar]
  20. Crichlow G.V. Zhou H. Hsiao H. Frederick K.B. Debrosse M. Yang Y. Folta-Stogniew E.J. Chung H.J. Fan C. De La Cruz E.M. Levens D. Lolis E. Braddock D. Dimerization of FIR upon FUSE DNA binding suggests a mechanism of c-myc inhibition. EMBO J. 2008 27 1 277 289 10.1038/sj.emboj.7601936 18059478
    [Google Scholar]
  21. Cranna N.J. Mitchell N.C. Hannan R.D. Quinn L.M. Hfp, the Drosophila homolog of the mammalian c-myc transcriptional-repressor and tumor suppressor FIR, inhibits dmyc transcription and cell growth. Fly (Austin) 2011 5 2 129 133 10.4161/fly.5.2.14482 21245665
    [Google Scholar]
  22. Matsushita K. Tomonaga T. Shimada H. Shioya A. Higashi M. Matsubara H. Harigaya K. Nomura F. Libutti D. Levens D. Ochiai T. An essential role of alternative splicing of c-myc suppressor FUSE-binding protein-interacting repressor in carcinogenesis. Cancer Res. 2006 66 3 1409 1417 10.1158/0008‑5472.CAN‑04‑4459 16452196
    [Google Scholar]
  23. Tanaka N. Araki K. Mizokami D. Miyagawa Y. Yamashita T. Tomifuji M. Ueda Y. Inoue M. Matsushita K. Nomura F. Shimada H. Shiotani A. Sendai virus-mediated gene transfer of the c-myc suppressor far-upstream element-binding protein-interacting repressor suppresses head and neck cancer. Gene Ther. 2015 22 4 297 304 10.1038/gt.2014.123 25588744
    [Google Scholar]
  24. Kitamura A. Matsushita K. Takiguchi Y. Shimada H. Tada Y. Yamanaka M. Hiroshima K. Tagawa M. Tomonaga T. Matsubara H. Inoue M. Hasegawa M. Sato Y. Levens D. Tatsumi K. Nomura F. Synergistic effect of non‐transmissible Sendai virus vector encoding the c‐myc suppressor FUSE‐binding protein‐interacting repressor plus cisplatin in the treatment of malignant pleural mesothelioma. Cancer Sci. 2011 102 7 1366 1373 10.1111/j.1349‑7006.2011.01931.x 21435101
    [Google Scholar]
  25. Sveen A. Kilpinen S. Ruusulehto A. Lothe R.A. Skotheim R.I. Aberrant RNA splicing in cancer; Expression changes and driver mutations of splicing factor genes. Oncogene 2016 35 19 2413 2427 10.1038/onc.2015.318 26300000
    [Google Scholar]
  26. Shuai S. Suzuki H. Diaz-Navarro A. Nadeu F. Kumar S.A. Gutierrez-Fernandez A. Delgado J. Pinyol M. López-Otín C. Puente X.S. Taylor M.D. Campo E. Stein L.D. The U1 spliceosomal RNA is recurrently mutated in multiple cancers. Nature 2019 574 7780 712 716 10.1038/s41586‑019‑1651‑z 31597163
    [Google Scholar]
  27. Sun D. Lei W. Hou X. Li H. Ni W. PUF60 accelerates the progression of breast cancer through down-regulation of PTEN expression. Cancer Manag. Res. 2019 11 821 830 10.2147/CMAR.S180242 30697074
    [Google Scholar]
  28. García-Cárdenas J.M. Armendáriz-Castillo I. Pérez-Villa A. Indacochea A. Jácome-Alvarado A. López-Cortés A. Guerrero S. Integrated in silico analyses identify PUF60 and SF3A3 as new spliceosome-related breast cancer RNA-binding proteins. Biology 2022 11 4 481 10.3390/biology11040481 35453681
    [Google Scholar]
  29. An J. Luo Z. An W. Cao D. Ma J. Liu Z. Identification of spliceosome components pivotal to breast cancer survival. RNA Biol. 2021 18 6 833 842 10.1080/15476286.2020.1822636 32965163
    [Google Scholar]
  30. Peng Y. Wang Y. Zhou C. Mei W. Zeng C. PI3K/Akt/mTOR pathway and its role in cancer therapeutics: Are we making headway? Front. Oncol. 2022 12 819128 10.3389/fonc.2022.819128 35402264
    [Google Scholar]
  31. Shi W. Hu D. Lin S. Zhuo R. Five-mRNA signature for the prognosis of breast cancer based on the ceRNA network. BioMed Res. Int. 2020 2020 1 17 10.1155/2020/9081852 32964046
    [Google Scholar]
  32. Ogura Y. Hoshino T. Tanaka N. Ailiken G. Kobayashi S. Kitamura K. Rahmutulla B. Kano M. Murakami K. Akutsu Y. Nomura F. Itoga S. Matsubara H. Matsushita K. Disturbed alternative splicing of FIR (PUF60) directed cyclin E overexpression in esophageal cancers. Oncotarget 2018 9 33 22929 22944 10.18632/oncotarget.25149 29796163
    [Google Scholar]
  33. Kobayashi S. Hiwasa T. Ishige T. Rahmutulla B. Kano M. Hoshino T. Minamoto T. Shimada H. Nomura F. Matsubara H. Matsushita K. Anti‐ FIR Δexon2, a splicing variant form of PUF 60, autoantibody is detected in the sera of esophageal squamous cell carcinoma. Cancer Sci. 2019 110 6 2004 2013 10.1111/cas.14024 30980774
    [Google Scholar]
  34. Welcker M. Clurman B.E. FBW7 ubiquitin ligase: A tumour suppressor at the crossroads of cell division, growth and differentiation. Nat. Rev. Cancer 2008 8 2 83 93 10.1038/nrc2290 18094723
    [Google Scholar]
  35. Müller B. Bovet M. Yin Y. Stichel D. Malz M. González-Vallinas M. Middleton A. Ehemann V. Schmitt J. Muley T. Meister M. Herpel E. Singer S. Warth A. Schirmacher P. Drasdo D. Matthäus F. Breuhahn K. Concomitant expression of far upstream element (FUSE ) binding protein (FBP ) interacting repressor ( FIR ) and its splice variants induce migration and invasion of non‐small cell lung cancer ( NSCLC ) cells. J. Pathol. 2015 237 3 390 401 10.1002/path.4588 26177862
    [Google Scholar]
  36. Xu N. Ren Y. Bao Y. Shen X. Kang J. Wang N. Wang Z. Han X. Li Z. Zuo J. Wei G.H. Wang Z. Zong W.X. Liu W. Xie G. Wang Y. PUF60 promotes cell cycle and lung cancer progression by regulating alternative splicing of CDC25C. Cell Rep. 2023 42 9 113041 10.1016/j.celrep.2023.113041 37682709
    [Google Scholar]
  37. Boutros R. Lobjois V. Ducommun B. CDC25 phosphatases in cancer cells: Key players? Good targets? Nat. Rev. Cancer 2007 7 7 495 507 10.1038/nrc2169 17568790
    [Google Scholar]
  38. Long Q. An X. Chen M. Wang N. Sui S. Li Y. Zhang C. Lee K. Wang X. Tian T. Pan Y. Qiu H. Xie F. Deng W. Zheng F. He L. PUF60/AURKA axis contributes to tumor progression and malignant phenotypes in bladder cancer. Front. Oncol. 2020 10 568015 10.3389/fonc.2020.568015 33117697
    [Google Scholar]
  39. Zheng D. Li J. Yan H. Zhang G. Li W. Chu E. Wei N. Emerging roles of Aurora-A kinase in cancer therapy resistance. Acta Pharm. Sin. B 2023 13 7 2826 2843 10.1016/j.apsb.2023.03.013 37521867
    [Google Scholar]
  40. Malz M. Bovet M. Samarin J. Rabenhorst U. Sticht C. Bissinger M. Roessler S. Bermejo J.L. Renner M. Calvisi D.F. Singer S. Ganzinger M. Weber A. Gretz N. Zörnig M. Schirmacher P. Breuhahn K. Overexpression of far upstream element (FUSE) binding protein (FBP)-interacting repressor (FIR) supports growth of hepatocellular carcinoma. Hepatology 2014 60 4 1241 1250 10.1002/hep.27218 24824848
    [Google Scholar]
  41. Kajiwara T. Matsushita K. Itoga S. Tamura M. Tanaka N. Tomonaga T. Matsubara H. Shimada H. Habara Y. Matsuo M. Nomura F. SAP 155‐mediatedc‐myc suppressor far‐upstream element‐binding protein‐interacting repressor splicing variants are activated in colon cancer tissues. Cancer Sci. 2013 104 2 149 156 10.1111/cas.12058 23113893
    [Google Scholar]
  42. Kobayashi S. Hoshino T. Hiwasa T. Satoh M. Rahmutulla B. Tsuchida S. Komukai Y. Tanaka T. Matsubara H. Shimada H. Nomura F. Matsushita K. Anti-FIRs (PUF60) auto-antibodies are detected in the sera of early-stage colon cancer patients. Oncotarget 2016 7 50 82493 82503 10.18632/oncotarget.12696 27756887
    [Google Scholar]
  43. Yuan X. Larsson C. Xu D. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: Old actors and new players. Oncogene 2019 38 34 6172 6183 10.1038/s41388‑019‑0872‑9 31285550
    [Google Scholar]
  44. Long Q. Hua Y. He L. Zhang C. Sui S. Li Y. Qiu H. Tian T. An X. Luo G. Yan Y. Zhao A. Shi D. Xie F. Chen M. Zheng F. Deng W. Poly(U) binding splicing factor 60 promotes renal cell carcinoma growth by transcriptionally upregulating telomerase reverse transcriptase. Int. J. Biol. Sci. 2020 16 15 3002 3017 10.7150/ijbs.45115 33061812
    [Google Scholar]
  45. Zhang C. Ni X. Tao C. Zhou Z. Wang F. Gu F. Cui X. Jiang S. Li Q. Lu H. Li D. Wu Z. Zhang R. Targeting PUF60 prevents tumor progression by retarding mRNA decay of oxidative phosphorylation in ovarian cancer. Cell Oncol. 2024 47 1 157 174 10.1007/s13402‑023‑00859‑w 37632669
    [Google Scholar]
  46. Ramakrishna M. Williams L.H. Boyle S.E. Bearfoot J.L. Sridhar A. Speed T.P. Gorringe K.L. Campbell I.G. Identification of candidate growth promoting genes in ovarian cancer through integrated copy number and expression analysis. PLoS One 2010 5 4 e9983 10.1371/journal.pone.0009983 20386695
    [Google Scholar]
  47. wang F. Peng L. Sun Y. Zhang B. Lu S. PUF60 promotes glioblastoma progression through regulation of EGFR stability. Biochem. Biophys. Res. Commun. 2022 636 Pt 1 190 196 10.1016/j.bbrc.2022.10.082 36335869
    [Google Scholar]
  48. Chauhan K. Kalam H. Dutt R. Kumar D. RNA splicing: A new paradigm in host-pathogen interactions. J. Mol. Biol. 2019 431 8 1565 1575 10.1016/j.jmb.2019.03.001 30857970
    [Google Scholar]
  49. Kew C. Huang W. Fischer J. Ganesan R. Robinson N. Antebi A. Evolutionarily conserved regulation of immunity by the splicing factor RNP-6/PUF60. eLife 2020 9 e57591 10.7554/eLife.57591 32538777
    [Google Scholar]
  50. Ren C. Chen T. Sun H. Jiang X. Hu C. Qian J. Wang Y. The first echinoderm poly-U-binding factor 60 kDa (PUF60) from sea cucumber ( Stichopus monotuberculatus ): Molecular characterization, inducible expression and involvement of apoptosis. Fish Shellfish Immunol. 2015 47 1 196 204 10.1016/j.fsi.2015.09.001 26362209
    [Google Scholar]
  51. Li W. Guan X. PUF60 of Japanese flounder is regulated by pol-miR-novel_395 and involved in pathogen infection, autophagy, and apoptosis. Dev. Comp. Immunol. 2021 123 104170 10.1016/j.dci.2021.104170 34144120
    [Google Scholar]
  52. Sun S. Nakashima K. Ito M. Li Y. Chida T. Takahashi H. Watashi K. Sawasaki T. Wakita T. Suzuki T. Involvement of PUF60 in transcriptional and post-transcriptional regulation of nepatitis B virus pregenomic RNA expression. Sci. Rep. 2017 7 1 12874 10.1038/s41598‑017‑12497‑y 28993636
    [Google Scholar]
  53. Jones J. Wortmann R. Idiopathic inflammatory myopathies—a review. Clin. Rheumatol. 2015 34 5 839 844 10.1007/s10067‑015‑2891‑4 25681070
    [Google Scholar]
  54. Zhang Y.M. Yang H.B. Shi J.L. Chen H. Shu X.M. Lu X. Wang G.C. Peng Q.L. The prevalence and clinical significance of anti-PUF60 antibodies in patients with idiopathic inflammatory myopathy. Clin. Rheumatol. 2018 37 6 1573 1580 10.1007/s10067‑018‑4031‑4 29541951
    [Google Scholar]
  55. Fiorentino D.F. Presby M. Baer A.N. Petri M. Rieger K.E. Soloski M. Rosen A. Mammen A.L. Christopher-Stine L. Casciola-Rosen L. PUF60: A prominent new target of the autoimmune response in dermatomyositis and Sjögren’s syndrome. Ann. Rheum. Dis. 2016 75 6 1145 1151 10.1136/annrheumdis‑2015‑207509 26253095
    [Google Scholar]
  56. Xu Q. Li C. Wang Y. Li H. Wu B. Jiang Y. Xu X. Role of PUF60 gene in Verheij syndrome: A case report of the first Chinese Han patient with a de novo pathogenic variant and review of the literature. BMC Med. Genomics 2018 11 1 92 10.1186/s12920‑018‑0421‑3 30352594
    [Google Scholar]
  57. Yamada M. Uehara T. Suzuki H. Takenouchi T. Kosaki K. Protein elongation variant ofPUF60 : Milder phenotypic end of the Verheij syndrome. Am. J. Med. Genet. A. 2020 182 11 2709 2714 10.1002/ajmg.a.61816 32851780
    [Google Scholar]
  58. Latypova X. Dang X. Zhang J. Isidor B. Letter regarding the article “two girls with short stature, short neck, vertebral anomalies, Sprengel deformity and intellectual disability” (Isidor et al., 2015). Eur. J. Med. Genet. 2021 64 4 104179 10.1016/j.ejmg.2021.104179 33636376
    [Google Scholar]
  59. Dauber A. Golzio C. Guenot C. Jodelka F.M. Kibaek M. Kjaergaard S. Leheup B. Martinet D. Nowaczyk M.J.M. Rosenfeld J.A. Zeesman S. Zunich J. Beckmann J.S. Hirschhorn J.N. Hastings M.L. Jacquemont S. Katsanis N. SCRIB and PUF60 are primary drivers of the multisystemic phenotypes of the 8q24.3 copy-number variant. Am. J. Hum. Genet. 2013 93 5 798 811 10.1016/j.ajhg.2013.09.010 24140112
    [Google Scholar]
  60. Hoogenboom A. Falix F.A. van der Laan L. Kerkhof J. Alders M. Sadikovic B. van Haelst M.M. Novel PUF60 variant suggesting an interaction between Verheij and Cornelia de Lange syndrome: Phenotype description and review of the literature. Eur. J. Hum. Genet. 2024 32 4 435 439 10.1038/s41431‑023‑01527‑1 38273166
    [Google Scholar]
  61. El Chehadeh S. Kerstjens-Frederikse W.S. Thevenon J. Kuentz P. Bruel A.L. Thauvin-Robinet C. Bensignor C. Dollfus H. Laugel V. Rivière J.B. Duffourd Y. Bonnet C. Robert M.P. Isaiko R. Straub M. Creuzot-Garcher C. Calvas P. Chassaing N. Loeys B. Reyniers E. Vandeweyer G. Kooy F. Hančárová M. Havlovicová M. Prchalová D. Sedláček Z. Gilissen C. Pfundt R. Wassink-Ruiter J.S.K. Faivre L. Dominant variants in the splicing factor PUF60 cause a recognizable syndrome with intellectual disability, heart defects and short stature. Eur. J. Hum. Genet. 2017 25 1 43 51 10.1038/ejhg.2016.133 27804958
    [Google Scholar]
  62. Miao M. Wang J. Guo C. Su X. Sun L. Lu S. Identification of a novel de novo PUF60 variant causing Verheij syndrome in a fetus. Gene 2024 897 148092 10.1016/j.gene.2023.148092 38110042
    [Google Scholar]
  63. Ogawa T. Xue J. Guo L. Inoue-Arai M.S. Vendramini-Pittoli S. Zechi-Ceide R.M. Candido-Souza R.M. Tonello C. Brandão M.M. Ozawa T.O. Peixoto A.P. Ruiz D.M.C.F. Nakashima T. Ikegawa S. Moriyama K. Kokitsu-Nakata N.M. Identification of a de novo PUF60 variant associated with craniofacial microsomia. Am. J. Med. Genet. A. 2024 194 9 e63631 10.1002/ajmg.a.63631 38647383
    [Google Scholar]
  64. Corsini L. Bonnal S. Basquin J. Hothorn M. Scheffzek K. Valcárcel J. Sattler M. U2AF-homology motif interactions are required for alternative splicing regulation by SPF45. Nat. Struct. Mol. Biol. 2007 14 7 620 629 10.1038/nsmb1260 17589525
    [Google Scholar]
  65. Jagtap P.K.A. Kubelka T. Soni K. Will C.L. Garg D. Sippel C. Kapp T.G. Potukuchi H.K. Schorpp K. Hadian K. Kessler H. Lührmann R. Hausch F. Bach T. Sattler M. Identification of phenothiazine derivatives as UHM-binding inhibitors of early spliceosome assembly. Nat. Commun. 2020 11 1 5621 10.1038/s41467‑020‑19514‑1 33159082
    [Google Scholar]
  66. Zhang R. Zhang C.C. Zhang Z.G. Chen Y.H. Guo W.K. Preparation of t-butoxycarbonyl heteroaryl compound as PUF60 inhibitors and antitumor agents. C.N. Patent 113149980A
    [Google Scholar]
  67. Zhang C.C. Study on the Mechanism of PUF60 Promoting the Development of Ovarian Cancer and the Effectiveness of Its Small Molecule Inhibitors. Southern Medical University 2020
    [Google Scholar]
  68. Inoue D. Chew G.L. Liu B. Michel B.C. Pangallo J. D’Avino A.R. Hitchman T. North K. Lee S.C.W. Bitner L. Block A. Moore A.R. Yoshimi A. Escobar-Hoyos L. Cho H. Penson A. Lu S.X. Taylor J. Chen Y. Kadoch C. Abdel-Wahab O. Bradley R.K. Spliceosomal disruption of the non-canonical BAF complex in cancer. Nature 2019 574 7778 432 436 10.1038/s41586‑019‑1646‑9 31597964
    [Google Scholar]
  69. Zhao Z. Xu Q. Wei R. Huang L. Wang W. Wei G. Ni T. Comprehensive characterization of somatic variants associated with intronic polyadenylation in human cancers. Nucleic Acids Res. 2021 49 18 10369 10381 10.1093/nar/gkab772 34508351
    [Google Scholar]
  70. Wan L. Lin K.T. Rahman M.A. Ishigami Y. Wang Z. Jensen M.A. Wilkinson J.E. Park Y. Tuveson D.A. Krainer A.R. Splicing factor SRSF1 promotes pancreatitis and KRASG12D-mediated pancreatic cancer. Cancer Discov. 2023 13 7 1678 1695 10.1158/2159‑8290.CD‑22‑1013 37098965
    [Google Scholar]
  71. Ailiken G. Kitamura K. Hoshino T. Satoh M. Tanaka N. Minamoto T. Rahmutulla B. Kobayashi S. Kano M. Tanaka T. Kaneda A. Nomura F. Matsubara H. Matsushita K. Post-transcriptional regulation of BRG1 by FIRΔexon2 in gastric cancer. Oncogenesis 2020 9 2 26 10.1038/s41389‑020‑0205‑4 32071290
    [Google Scholar]
  72. Kitamura K. Hoshino T. Okabe A. Fukuyo M. Rahmutulla B. Tanaka N. Kobayashi S. Tanaka T. Shida T. Ueda M. Minamoto T. Matsubara H. Kaneda A. Ishii H. Matsushita K. The link of mRNA and rRNA transcription by PUF60/FIR through TFIIH/P62 as a novel therapeutic target for cancer. Int. J. Mol. Sci. 2023 24 24 17341 10.3390/ijms242417341 38139171
    [Google Scholar]
  73. Matsushita K. Kitamura K. Rahmutulla B. Tanaka N. Ishige T. Satoh M. Hoshino T. Miyagi S. Mori T. Itoga S. Shimada H. Tomonaga T. Kito M. Nakajima-Takagi Y. Kubo S. Nakaseko C. Hatano M. Miki T. Matsuo M. Fukuyo M. Kaneda A. Iwama A. Nomura F. Haploinsufficiency of the c-myc transcriptional repressor FIR, as a dominant negative-alternative splicing model, promoted p53-dependent T-cell acute lymphoblastic leukemia progression by activating Notch1. Oncotarget 2015 6 7 5102 5117 10.18632/oncotarget.3244 25671302
    [Google Scholar]
  74. Low K.J. Ansari M. Abou Jamra R. Clarke A. El Chehadeh S. FitzPatrick D.R. Greenslade M. Henderson A. Hurst J. Keller K. Kuentz P. Prescott T. Roessler F. Selmer K.K. Schneider M.C. Stewart F. Tatton-Brown K. Thevenon J. Vigeland M.D. Vogt J. Willems M. Zonana J. Study D.D.D. Smithson S.F. PUF60 variants cause a syndrome of ID, short stature, microcephaly, coloboma, craniofacial, cardiac, renal and spinal features. Eur. J. Hum. Genet. 2017 25 5 552 559 10.1038/ejhg.2017.27 28327570
    [Google Scholar]
  75. Thirumalaivasan N. Kanagaraj K. Logesh K. Chandrasekaran S. Kumar S. Subramanian R. Senthilkumar N. Kumar A. Angadi V.J.A. A Al-Kahtani A. Exploring luminescent carbon dots derived from syrup bottle waste and curcumin for potential antimicrobial and bioimaging applications. Chemosphere 2024 354 141592 10.1016/j.chemosphere.2024.141592 38467196
    [Google Scholar]
  76. Thirumalaivasan N. Gnanasekaran L. Kumar S. Durvasulu R. Sundaram T. Rajendran S. Nangan S. Kanagaraj K. Utilization of fungal and bacterial bioremediation techniques for the treatment of toxic waste and biowaste. Front. Mater. 2024 11 1416445 10.3389/fmats.2024.1416445
    [Google Scholar]
  77. Thirumalaivasan N. Gopi S. Karthik K. Nangan S. Kanagaraj K. Rajendran S. Nano-PCM materials: Bridging the gap in energy storage under fluctuating environmental conditions. Process Saf. Environ. Prot. 2024 189 1003 1021 10.1016/j.psep.2024.06.079
    [Google Scholar]
  78. Huang W. Kew C. Fernandes S.A. Löhrke A. Han L. Demetriades C. Antebi A. Decreased spliceosome fidelity and egl-8 intron retention inhibit mTORC1 signaling to promote longevity. Nature Aging 2022 2 9 796 808 10.1038/s43587‑022‑00275‑z 37118503
    [Google Scholar]
  79. Li M. Ren C. Zhou S. He Y. Guo Y. Zhang H. Liu L. Cao Q. Wang C. Huang J. Hu Y. Bai X. Guo X. Shu W. Huo R. Integrative proteome analysis implicates aberrant RNA splicing in impaired developmental potential of aged mouse oocytes. Aging Cell 2021 20 10 e13482 10.1111/acel.13482 34582091
    [Google Scholar]
  80. Hanzawa H. Shimada T. Takahashi M. Takahashi H. Revisiting biomolecular NMR spectroscopy for promoting small-molecule drug discovery. J. Biomol. NMR 2020 74 10-11 501 508 10.1007/s10858‑020‑00314‑0 32306215
    [Google Scholar]
  81. Kang Z. Li S. Li Y. Song J. Peng Y. Chen Y. Small molecular inhibitors and degraders targeting STAT3 for cancer therapy: An updated review (from 2022 to 2024). Chin. Chem. Lett. 2024 35 110447 10.1016/j.cclet.2024.110447
    [Google Scholar]
  82. Mizuguchi H. Ito T. Nishida K. Wakugawa T. Nakano T. Tanabe A. Watano T. Kitamura N. Kaminuma O. Kimura K. Ishida T. Matsunaga A. Ohta K. Shimono R. Kutsuna H. Yasuda T. Yabumoto M. Kitamura Y. Takeda N. Fukui H. Structure-activity relationship studies of pyrogallol as a calcineurin/NFAT signaling suppressor. J. Pharmacol. Sci. 2024 155 4 140 147 10.1016/j.jphs.2024.06.002 38880548
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206346843241119105519
Loading
/content/journals/acamc/10.2174/0118715206346843241119105519
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: FIRΔexon2 ; cancer ; verheij syndrome ; FIR ; PUF60 ; alternative splicing of pre-mRNA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test