Skip to content
2000
Volume 25, Issue 4
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Tumor cell resistance to cisplatin is a common challenge in endometrial cancer chemotherapy, stemming from various mechanisms. Targeted therapies using proteasome inhibitors, such as MG132, have been investigated to enhance cisplatin sensitivity, potentially offering a novel treatment approach.

Objective

The aim of this study was to investigate the effects of MG132 on cisplatin sensitivity in the human endometrial cancer (EC) cell line RL95-2, focusing on cell proliferation, apoptosis, and cell signaling.

Methods

Human endometrial cancer RL95-2 cells were exposed to MG132, and cell viability was assessed in a dose-dependent manner. The study evaluated the effect of MG132 on cisplatin-induced proliferation inhibition and apoptosis, correlating with caspase-3 activation and reactive oxygen species (ROS) upregulation. Additionally, we examined the inhibition of the ubiquitin-proteasome system and the expression of pro-inflammatory cytokines IL-1β, IL-6, IL-8, and IL-13 during MG132 and cisplatin co-administration.

Results

MG132 exposure significantly reduced cell viability in a dose-dependent manner. It augmented cisplatin-induced proliferation inhibition and enhanced apoptosis, correlating with caspase-3 activation and ROS upregulation. Molecular analysis revealed a profound inhibition of the ubiquitin-proteasome system. MG132 also significantly increased the expression of cisplatin-induced pro-inflammatory cytokines, suggesting a transition from chronic to acute inflammation.

Conclusion

MG132 enhances the therapeutic efficacy of cisplatin in human EC cells by suppressing the ubiquitin-proteasome pathway, reducing cell viability, enhancing apoptosis, and shifting the inflammatory response. These findings highlighted the potential of MG132 as an adjuvant in endometrial cancer chemotherapy. Further research is needed to explore detailed mechanisms and clinical applications of this combination therapy.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206343550240919055701
2024-10-01
2025-02-28
Loading full text...

Full text loading...

References

  1. XieW. LiuN. WangX. WeiL. XieW. ShengX. Wilms’ tumor 1-associated protein contributes to chemo-resistance to cisplatin through the Wnt/β-catenin pathway in endometrial cancer.Front. Oncol.20211159834410.3389/fonc.2021.598344 33680959
    [Google Scholar]
  2. QiangW. SuiF. MaJ. LiX. RenX. ShaoY. LiuJ. GuanH. ShiB. HouP. Proteasome inhibitor MG132 induces thyroid cancer cell apoptosis by modulating the activity of transcription factor FOXO3a.Endocrine20175619810810.1007/s12020‑017‑1256‑y 28220348
    [Google Scholar]
  3. LeeH.K. ParkS.H. NamM.J. Proteasome inhibitor MG132 induces apoptosis in human osteosarcoma U2OS cells.Hum. Exp. Toxicol.202140111985199710.1177/09603271211017972 34002651
    [Google Scholar]
  4. ZhengZ. WangX. ChenD. Proteasome inhibitor MG132 enhances the sensitivity of human OSCC cells to cisplatin via a ROS/DNA damage/p53 axis.Exp. Ther. Med.202325522410.3892/etm.2023.11924 37123203
    [Google Scholar]
  5. SunF. ZhangY. XuL. LiS. ChenX. ZhangL. WuY. LiJ. Proteasome inhibitor MG132 enhances cisplatin-induced apoptosis in osteosarcoma cells and inhibits tumor growth.Oncol. Res.201826465566410.3727/096504017X15119525209765 29191257
    [Google Scholar]
  6. ParkJ. ChoJ. SongE.J. Ubiquitin–proteasome system (UPS) as a target for anticancer treatment.Arch. Pharm. Res.202043111144116110.1007/s12272‑020‑01281‑8 33165832
    [Google Scholar]
  7. SahasrabuddheA.A. Elenitoba-JohnsonK.S.J. Role of the ubiquitin proteasome system in hematologic malignancies.Immunol. Rev.2015263122423910.1111/imr.12236 25510280
    [Google Scholar]
  8. LiY. LiS. WuH. Ubiquitination-proteasome system (UPS) and autophagy two main protein degradation machineries in response to cell stress.Cells202211585110.3390/cells11050851 35269473
    [Google Scholar]
  9. WuH.Q. BakerD. OvaaH. Small molecules that target the ubiquitin system.Biochem. Soc. Trans.202048247949710.1042/BST20190535 32196552
    [Google Scholar]
  10. SharmaA. KhanH. SinghT. GrewalA. NajdaA. Kawecka-RadomskaM. KamelM. AltyarA. Abdel-DaimM. Pharmacological modulation of ubiquitin-proteasome pathways in oncogenic signaling.Int. J. Mol. Sci.202122211197110.3390/ijms222111971 34769401
    [Google Scholar]
  11. MorganJ.J. CrawfordL.J. The ubiquitin proteasome system in genome stability and cancer.Cancers (Basel)2021139223510.3390/cancers13092235 34066546
    [Google Scholar]
  12. BuZ. YangJ. ZhangY. LuoT. FangC. LiangX. PengQ. WangD. LinN. ZhangK. TangW. Sequential ubiquitination and phosphorylation epigenetics reshaping by MG132‐loaded Fe‐MOF disarms treatment resistance to repulse metastatic colorectal cancer.Adv. Sci. (Weinh.)20231023230163810.1002/advs.202301638 37303273
    [Google Scholar]
  13. BehlT. ChadhaS. SachdevaM. KumarA. HafeezA. MehtaV. BungauS. Ubiquitination in rheumatoid arthritis.Life Sci.202026111845910.1016/j.lfs.2020.118459 32961230
    [Google Scholar]
  14. LiuF. GaoX. YuH. YuanD. ZhangJ. HeY. YueL. Effects of expression of exogenous cyclin G1 on proliferation of human endometrial carcinoma cells.Chin. J. Physiol.2013562838910.4077/CJP.2013.BAA079 23589924
    [Google Scholar]
  15. PapaL. GomesE. RockwellP. Reactive oxygen species induced by proteasome inhibition in neuronal cells mediate mitochondrial dysfunction and a caspase-independent cell death.Apoptosis20071281389140510.1007/s10495‑007‑0069‑5 17415663
    [Google Scholar]
  16. LlobetD. EritjaN. EncinasM. SorollaA. YeramianA. SchoenenbergerJ.A. Llombart-CussacA. MartiR.M. Matias-GuiuX. DolcetX. Antioxidants block proteasome inhibitor function in endometrial carcinoma cells.Anticancer Drugs200819211512410.1097/CAD.0b013e3282f24031 18176107
    [Google Scholar]
  17. MaJ. YuL. TianJ. MuY. LvZ. ZouJ. LiJ. WangH. XuW. MG132 reverse the malignant characteristics of hypopharyngeal cancer.Mol. Med. Rep.2014962587259110.3892/mmr.2014.2103 24691740
    [Google Scholar]
  18. HanY.H. MoonH.J. YouB.R. ParkW.H. The attenuation of MG132, a proteasome inhibitor, induced A549 lung cancer cell death by p38 inhibitor in ROS-independent manner.Oncol. Res.200918731532210.3727/096504010X12626118079949 20377132
    [Google Scholar]
  19. Park; Moon, H.J.; You, B.R.; Park, W.H. The effect of MG132, a proteasome inhibitor on HeLa cells in relation to cell growth, reactive oxygen species and GSH.Oncol. Rep.200922121522110.3892/or_00000427 19513526
    [Google Scholar]
  20. MatsuoY. SawaiH. OchiN. YasudaA. SakamotoM. TakahashiH. FunahashiH. TakeyamaH. GuhaS. Proteasome inhibitor MG132 inhibits angiogenesis in pancreatic cancer by blocking NF-kappaB activity.Dig. Dis. Sci.20105541167117610.1007/s10620‑009‑0814‑4 19399612
    [Google Scholar]
  21. ParkW.H. KimS.H. MG132, a proteasome inhibitor, induces human pulmonary fibroblast cell death via increasing ROS levels and GSH depletion.Oncol. Rep.20122741284129110.3892/or.2012.1642 22266922
    [Google Scholar]
  22. ZhuW. LiuJ. NieJ. ShengW. CaoH. ShenW. DongA. ZhouJ. JiaoY. ZhangS. CaoJ. MG132 enhances the radiosensitivity of lung cancer cells in vitro and in vivo.Oncol. Rep.20153442083208910.3892/or.2015.4169 26238156
    [Google Scholar]
  23. ZhangY. YangB. ZhaoJ. LiX. ZhangL. ZhaiZ. Proteasome inhibitor carbobenzoxy-L-leucyl-L-leucyl-L-leucinal (MG132) enhances therapeutic effect of paclitaxel on breast cancer by inhibiting nuclear factor (NF)-κB signaling.Med. Sci. Monit.20182429430410.12659/MSM.908139 29332931
    [Google Scholar]
  24. ChenJ.J. HuangW.C. ChenC.C. Transcriptional regulation of cyclooxygenase-2 in response to proteasome inhibitors involves reactive oxygen species-mediated signaling pathway and recruitment of CCAAT/enhancer-binding protein delta and CREB-binding protein.Mol. Biol. Cell200516125579559110.1091/mbc.e05‑08‑0778 16195339
    [Google Scholar]
  25. ChenH. RenX. WangW. ZhangY. ChenS. ZhangB. WangL. Upregulated ROS production induced by the proteasome inhibitor MG-132 on XBP1 gene expression and cell apoptosis in Tca-8113 cells.Biomed. Pharmacother.201468670971310.1016/j.biopha.2014.07.011 25092240
    [Google Scholar]
  26. TsakiriE.N. TrougakosI.P. The amazing ubiquitin-proteasome system: structural components and implication in aging.Int. Rev. Cell Mol. Biol.201531417123710.1016/bs.ircmb.2014.09.002 25619718
    [Google Scholar]
  27. KurozumiN. TsujiokaT. OuchidaM. SakakibaraK. NakaharaT. SuemoriS. TakeuchiM. KitanakaA. ShibakuraM. TohyamaK. VLX1570 induces apoptosis through the generation of ROS and induction of ER stress on leukemia cell lines.Cancer Sci.202111283302331310.1111/cas.14982 34032336
    [Google Scholar]
  28. ZhangW. CheQ. TanH. QiX. LiJ. LiD. GuQ. ZhuT. LiuM. Marine Streptomyces sp. derived antimycin analogues suppress HeLa cells via depletion HPV E6/E7 mediated by ROS-dependent ubiquitin–proteasome system.Sci. Rep.2017714218010.1038/srep42180 28176847
    [Google Scholar]
  29. GadhaveK. KumarP. KapugantiS. UverskyV. GiriR. Unstructured biology of proteins from ubiquitin-proteasome system: Roles in cancer and neurodegenerative diseases.Biomolecules202010579610.3390/biom10050796 32455657
    [Google Scholar]
  30. LipchickB.C. FinkE.E. NikiforovM.A. Oxidative stress and proteasome inhibitors in multiple myeloma.Pharmacol. Res.201610521021510.1016/j.phrs.2016.01.029 26827824
    [Google Scholar]
  31. PerilloB. Di DonatoM. PezoneA. Di ZazzoE. GiovannelliP. GalassoG. CastoriaG. MigliaccioA. ROS in cancer therapy: the bright side of the moon.Exp. Mol. Med.202052219220310.1038/s12276‑020‑0384‑2 32060354
    [Google Scholar]
  32. SahooB.M. BanikB.K. BorahP. JainA. Reactive oxygen species (ROS): Key components in cancer therapies.Anticancer. Agents Med. Chem.202222221522210.2174/1871520621666210608095512 34102991
    [Google Scholar]
  33. NakamuraH. TakadaK. Reactive oxygen species in cancer: Current findings and future directions.Cancer Sci.2021112103945395210.1111/cas.15068 34286881
    [Google Scholar]
  34. HeM. WangM. XuT. ZhangM. DaiH. WangC. DingD. ZhongZ. Reactive oxygen species-powered cancer immunotherapy: Current status and challenges.J. Control. Release202335662364810.1016/j.jconrel.2023.02.040 36868519
    [Google Scholar]
  35. SiomekA. TujakowskiJ. GackowskiD. RozalskiR. FoksinskiM. DziamanT. RoszkowskiK. OlinskiR. Severe oxidatively damaged DNA after cisplatin treatment of cancer patients.Int. J. Cancer200611992228223010.1002/ijc.22088 16804900
    [Google Scholar]
  36. AriharaY. TakadaK. KamiharaY. HayasakaN. NakamuraH. MuraseK. IkedaH. IyamaS. SatoT. MiyanishiK. KobuneM. KatoJ. Small molecule CP-31398 induces reactive oxygen species-dependent apoptosis in human multiple myeloma.Oncotarget2017839658896589910.18632/oncotarget.19508 29029480
    [Google Scholar]
  37. NakamuraH. TakadaK. AriharaY. HayasakaN. MuraseK. IyamaS. KobuneM. MiyanishiK. KatoJ. Six-transmembrane epithelial antigen of the prostate 1 protects against increased oxidative stress via a nuclear erythroid 2-related factor pathway in colorectal cancer.Cancer Gene Ther.2019269-1031332210.1038/s41417‑018‑0056‑8 30401882
    [Google Scholar]
  38. SrinivasU.S. TanB.W.Q. VellayappanB.A. JeyasekharanA.D. ROS and the DNA damage response in cancer.Redox Biol.20192510108410.1016/j.redox.2018.101084 30612957
    [Google Scholar]
  39. HeL. NanM.H. OhH.C. KimY.H. JangJ.H. EriksonR.L. AhnJ.S. KimB.Y. Asperlin induces G2/M arrest through ROS generation and ATM pathway in human cervical carcinoma cells.Biochem. Biophys. Res. Commun.2011409348949310.1016/j.bbrc.2011.05.032 21600879
    [Google Scholar]
  40. Paniagua SorianoG. De BruinG. OverkleeftH.S. FloreaB.I. Toward understanding induction of oxidative stress and apoptosis by proteasome inhibitors.Antioxid. Redox Signal.201421172419244310.1089/ars.2013.5794 24437477
    [Google Scholar]
  41. CuiW. BaiY. LuoP. MiaoL. CaiL. Preventive and therapeutic effects of MG132 by activating Nrf2-ARE signaling pathway on oxidative stress-induced cardiovascular and renal injury.Oxid. Med. Cell. Longev.20132013111010.1155/2013/306073 23533688
    [Google Scholar]
  42. Georgiou-SiafisS.K. TsiftsoglouA.S. Activation of KEAP1/NRF2 stress signaling involved in the molecular basis of hemin-induced cytotoxicity in human pro-erythroid K562 cells.Biochem. Pharmacol.202017511390010.1016/j.bcp.2020.113900 32156661
    [Google Scholar]
  43. AlvaN. Panisello-RosellóA. FloresM. Roselló-CatafauJ. CarbonellT. Ubiquitin-proteasome system and oxidative stress in liver transplantation.World J. Gastroenterol.201824313521353010.3748/wjg.v24.i31.3521 30131658
    [Google Scholar]
  44. ParkS. ParkJ.A. YooH. ParkH.B. LeeY. Proteasome inhibitor-induced cleavage of HSP90 is mediated by ROS generation and caspase 10-activation in human leukemic cells.Redox Biol.20171347047610.1016/j.redox.2017.07.010 28715732
    [Google Scholar]
  45. Redza-DutordoirM. Averill-BatesD.A. Activation of apoptosis signalling pathways by reactive oxygen species.Biochim. Biophys. Acta Mol. Cell Res.20161863122977299210.1016/j.bbamcr.2016.09.012 27646922
    [Google Scholar]
  46. KodrońA. MussuliniB.H. PileckaI. ChacińskaA. The ubiquitin-proteasome system and its crosstalk with mitochondria as therapeutic targets in medicine.Pharmacol. Res.202116310524810.1016/j.phrs.2020.105248 33065283
    [Google Scholar]
  47. LehmannG. UdasinR.G. CiechanoverA. On the linkage between the ubiquitin-proteasome system and the mitochondria.Biochem. Biophys. Res. Commun.20164731808610.1016/j.bbrc.2016.03.055 26996128
    [Google Scholar]
  48. BragoszewskiP. TurekM. ChacinskaA. Control of mitochondrial biogenesis and function by the ubiquitin–proteasome system.Open Biol.20177417000710.1098/rsob.170007 28446709
    [Google Scholar]
  49. Haberecht-MüllerS. KrügerE. FielitzJ. Out of control: The role of the ubiquitin proteasome system in skeletal muscle during inflammation.Biomolecules2021119132710.3390/biom11091327 34572540
    [Google Scholar]
  50. CockramP.E. KistM. PrakashS. ChenS.H. WertzI.E. VucicD. Ubiquitination in the regulation of inflammatory cell death and cancer.Cell Death Differ.202128259160510.1038/s41418‑020‑00708‑5 33432113
    [Google Scholar]
  51. IkedaF. Diverse ubiquitin codes in the regulation of inflammatory signaling.Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.202096943143910.2183/pjab.96.032 33177297
    [Google Scholar]
  52. ÇetinG. KlafackS. Studencka-TurskiM. KrügerE. EbsteinF. The ubiquitin–proteasome system in immune cells.Biomolecules20211116010.3390/biom11010060 33466553
    [Google Scholar]
  53. AliK. SalehZ. JalalJ. Effect of local propolis irrigation in experimental periodontitis in rats on inflammatory markers (IL-1β and TNF-α) and oxidative stress.Indian J. Dent. Res.202031689389810.4103/ijdr.IJDR_909_19 33753660
    [Google Scholar]
  54. RoohiE. JaafariN. HashemianF. On inflammatory hypothesis of depression: what is the role of IL-6 in the middle of the chaos?J. Neuroinflammation20211814510.1186/s12974‑021‑02100‑7 33593388
    [Google Scholar]
  55. HeX. MaQ. FanY. ZhaoB. WangW. ZhuF. MaX. ZhouL. The role of cytokines in predicting the efficacy of acute stage treatment in patients with schizophrenia.Neuropsychiatr. Dis. Treat.20201619119910.2147/NDT.S218483 32021213
    [Google Scholar]
  56. Nur HusnaS.M. Md ShukriN. Mohd AshariN.S. WongK.K. IL-4/IL-13 axis as therapeutic targets in allergic rhinitis and asthma.PeerJ202210e1344410.7717/peerj.13444 35663523
    [Google Scholar]
  57. OnumaK. KandaY. Suzuki IkedaS. SakakiR. NonomuraT. KobayashiM. OsakiM. ShikanaiM. KobayashiH. OkadaF. Fermented brown rice and rice bran with Aspergillus oryzae (FBRA) prevents inflammation-related carcinogenesis in mice, through inhibition of inflammatory cell infiltration.Nutrients2015712102371025010.3390/nu7125531 26670250
    [Google Scholar]
  58. ShahS.C. ItzkowitzS.H. Colorectal cancer in inflammatory bowel disease: Mechanisms and management.Gastroenterology2022162371573010.1053/j.gastro.2021.10.035
    [Google Scholar]
  59. RefoloM.G. MessaC. GuerraV. CarrB.I. D’AlessandroR. Inflammatory mechanisms of HCC development.Cancers (Basel)202012364110.3390/cancers12030641 32164265
    [Google Scholar]
  60. LaiH. LiuY. WuJ. CaiJ. JieH. XuY. DengS. Targeting cancer-related inflammation with non-steroidal anti-inflammatory drugs: Perspectives in pharmacogenomics.Front. Pharmacol.202213107876610.3389/fphar.2022.1078766 36545311
    [Google Scholar]
  61. LiggettJ.L. ZhangX. ElingT.E. BaekS.J. Anti-tumor activity of non-steroidal anti-inflammatory drugs: Cyclooxygenase-independent targets.Cancer Lett.2014346221722410.1016/j.canlet.2014.01.021 24486220
    [Google Scholar]
  62. HajduS.I. Pathfinders in oncology from the beginning of the 19th century to the inauguration of the first cancer hospital in the United States.Cancer2018124223024110.1002/cncr.31135 29149477
    [Google Scholar]
  63. DavidH. Rudolf Virchow and modern aspects of tumor pathology.Pathol. Res. Pract.1988183335636410.1016/S0344‑0338(88)80138‑9 3047716
    [Google Scholar]
  64. DenkD. GretenF.R. Inflammation: the incubator of the tumor microenvironment.Trends Cancer202281190191410.1016/j.trecan.2022.07.002 35907753
    [Google Scholar]
  65. MichelsN. van AartC. MorisseJ. MulleeA. HuybrechtsI. Chronic inflammation towards cancer incidence: A systematic review and meta-analysis of epidemiological studies.Crit. Rev. Oncol. Hematol.202115710317710.1016/j.critrevonc.2020.103177 33264718
    [Google Scholar]
  66. TanZ. XueH. SunY. ZhangC. SongY. QiY. The role of tumor inflammatory microenvironment in lung cancer.Front. Pharmacol.20211268862510.3389/fphar.2021.688625 34079469
    [Google Scholar]
  67. HibinoS. KawazoeT. KasaharaH. ItohS. IshimotoT. Sakata-YanagimotoM. TaniguchiK. Inflammation-induced tumorigenesis and metastasis.Int. J. Mol. Sci.20212211542110.3390/ijms22115421 34063828
    [Google Scholar]
  68. ZhaoH. WuL. YanG. ChenY. ZhouM. WuY. LiY. Inflammation and tumor progression: signaling pathways and targeted intervention.Signal Transduct. Target. Ther.20216126310.1038/s41392‑021‑00658‑5 34248142
    [Google Scholar]
  69. LiuX. YinL. ShenS. HouY. Inflammation and cancer: paradoxical roles in tumorigenesis and implications in immunotherapies.Genes Dis.202310115116410.1016/j.gendis.2021.09.006 37013041
    [Google Scholar]
  70. PiotrowskiI. KulcentyK. SuchorskaW. Interplay between inflammation and cancer.Rep. Pract. Oncol. Radiother.202025342242710.1016/j.rpor.2020.04.004 32372882
    [Google Scholar]
  71. KornilukA. KoperO. KemonaH. Dymicka-PiekarskaV. From inflammation to cancer.Ir J Med Sci.20171861576210.1007/s11845‑016‑1464‑0
    [Google Scholar]
  72. RudmannD.G. On-target and off-target-based toxicologic effects.Toxicol. Pathol.201341231031410.1177/0192623312464311 23085982
    [Google Scholar]
  73. LinA. GiulianoC.J. PalladinoA. JohnK.M. AbramowiczC. YuanM.L. SausvilleE.L. LukowD.A. LiuL. ChaitA.R. GalluzzoZ.C. TuckerC. SheltzerJ.M. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials.Sci. Transl. Med.201911509eaaw841210.1126/scitranslmed.aaw8412 31511426
    [Google Scholar]
  74. MaN. ChenX. JohnstonL.J. MaX. Gut microbiota‐stem cell niche crosstalk: A new territory for maintaining intestinal homeostasis.iMeta202214e5410.1002/imt2.54 38867904
    [Google Scholar]
  75. StrikoudisA. GuillamotM. AifantisI. Regulation of stem cell function by protein ubiquitylation.EMBO Rep.201415436538210.1002/embr.201338373 24652853
    [Google Scholar]
  76. Rodriguez-FernandezI.A. QiY. JasperH. Loss of a proteostatic checkpoint in intestinal stem cells contributes to age-related epithelial dysfunction.Nat. Commun.2019101105010.1038/s41467‑019‑08982‑9 30837466
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206343550240919055701
Loading
/content/journals/acamc/10.2174/0118715206343550240919055701
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): chemoresistance; Cisplatin; endometrial cancer; inflammation; MG132; ubiquitin-proteasome
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test