Skip to content
2000
image of Investigation of the Anticarcinogenic Effects of Hypericum perforatum Extract on Human Thyroid Cancer

Abstract

Introduction/Objective

Plants and their bioactive compounds play a crucial role in the pharmaceutical industry for treating cancer. To date, the cytotoxic and antiproliferative effects of methanol extract on human thyroid cancer cell lines have not been thoroughly explored. The present study aimed to assess the potential anti-cancer effects of HPME on human thyroid cancer and investigate its potential therapeutic benefits.

Methods

HPME was prepared using the maceration method, and its antioxidant activity was examined. Cytotoxicity studies were then carried out, followed by an investigation of the possible effects of HPME on metastasis and colony-forming capacities of human thyroid cancer cells. Afterward, qRT-PCR, western blotting, and apoptosis assays were performed.

Results

Cytotoxicity studies revealed notable cytotoxicity of HPME against the TT cell line. Moreover, HPME significantly curtailed metastasis and invasion of TT cells in an wound healing assay. Analyses of gene expressions demonstrated an elevation in caspase-12, caspase-3, and Bax, coupled with a reduction in BcL-2, APOE, and CLU expression. Following HPME treatment, there was an increase in the protein expression levels of Bax and Caspase-12, while a decrease in the BcL-2, APOE, and CLU protein expression. Furthermore, apoptotic studies indicated an increase in early apoptosis.

Conclusion

Overall results revealed that HPME demonstrates a notable antioxidant capacity in human thyroid cancer. It exerts an influence on crucial biological processes associated with cancer, indicating its potential to hinder the proliferation of human thyroid cancer cells by enhancing apoptosis through the upregulation of gene and protein expression, particularly involving caspases.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206340411241120051020
2025-01-14
2025-03-29
Loading full text...

Full text loading...

References

  1. Li L. Cheng L. Sa R. Qiu X. Chen L. Real-world insights into the efficacy and safety of tyrosine kinase inhibitors against thyroid cancers. Crit. Rev. Oncol. Hematol. 2022 172 103624 10.1016/j.critrevonc.2022.103624 35150866
    [Google Scholar]
  2. Sen M. Ito R. Abe T. Kazusaka H. Matsui M. Saitou M. Nagaoka R. Jikuzono T. Sugitani I. Elevations of neutrophil-to-lymphocyte ratio and C-reactive protein over time as a precursor to anaplastic transformation of papillary thyroid carcinoma: a case report. Surg. Case Rep. 2024 10 1 190 10.1186/s40792‑024‑01991‑x 39158760
    [Google Scholar]
  3. Nan B. Xiong G.F. Zhao Z.R. Gu X. Huang X.S. Comprehensive Identification of Potential Crucial Genes and miRNA-mRNA Regulatory Networks in Papillary Thyroid Cancer. BioMed Res. Int. 2021 2021 1 25 10.1155/2021/6752141 33521130
    [Google Scholar]
  4. Lukyanov S.A. Titov S.E. Kozorezova E.S. Demenkov P.S. Veryaskina Y.A. Korotovskii D.V. Ilyina T.E. Vorobyev S.L. Zhivotov V.A. Bondarev N.S. Sleptsov I.V. Sergiyko S.V. Prediction of the Aggressive Clinical Course of Papillary Thyroid Carcinoma Based on Fine Needle Aspiration Biopsy Molecular Testing. Int. J. Mol. Sci. 2024 25 13 7090 10.3390/ijms25137090 39000197
    [Google Scholar]
  5. Vander Heiden M.G. DeBerardinis R.J. Understanding the Intersections between Metabolism and Cancer Biology. Cell 2017 168 4 657 669 10.1016/j.cell.2016.12.039 28187287
    [Google Scholar]
  6. Lin X. Zhang J. Zhao R.H. Zhang W.J. Wu J.F. Xue G. APOE Is a Prognostic Biomarker and Correlates with Immune Infiltrates in Papillary Thyroid Carcinoma. J. Cancer 2022 13 5 1652 1663 10.7150/jca.63545 35371313
    [Google Scholar]
  7. Ren L. Yi J. Li W. Zheng X. Liu J. Wang J. Du G. Apolipoproteins and cancer. Cancer Med. 2019 8 16 7032 7043 10.1002/cam4.2587 31573738
    [Google Scholar]
  8. Saetta A.A. Lazaris A.C. Miaouli M. Voutsinas G.E. Patsouris E. Tseleni-Balafouta S. Resistance to Fas-Mediated Apoptosis Does Not Correlate to Structural Alterations or Expression Changes of the Death Receptor in Papillary Thyroid Carcinomas. Pathobiology 2018 85 5-6 304 310 10.1159/000492358 30278467
    [Google Scholar]
  9. Batool S. Asim L. Raffaq Qureshi F. Masood A. Mushtaq M. Saleem R.S.Z. Molecular Targets of Plant-based Alkaloids and Polyphenolics in Liver and Breast Cancer- An Insight into Anticancer Drug Development. Anticancer. Agents Med. Chem. 2024 24 10.2174/0118715206302216240628072554 38963106
    [Google Scholar]
  10. Koralahalli KP Hussain S D DW Siddikuzzaman V MB Molecular Actions of Enicostemma hyssopifolium Whole Plant Extract on HPV18-Infected Human Cervical Cancer (HeLa) Cells. Anticancer Agents Med Chem. 2024
    [Google Scholar]
  11. Caldeira G.I. Gouveia L.P. Serrano R. Silva O.D. Hypericum Genus as a Natural Source for Biologically Active Compounds. Plants 2022 11 19 2509 10.3390/plants11192509 36235373
    [Google Scholar]
  12. Avila C. Whitten D. Evans S. The safety of St John’s wort ( Hypericum perforatum ) in pregnancy and lactation: A systematic review of rodent studies. Phytother. Res. 2018 32 8 1488 1500 10.1002/ptr.6099 29708295
    [Google Scholar]
  13. Rizzo P. Altschmied L. Ravindran B.M. Rutten T. D’Auria J.C. The Biochemical and Genetic Basis for the Biosynthesis of Bioactive Compounds in Hypericum perforatum L., One of the Largest Medicinal Crops in Europe. Genes (Basel) 2020 11 10 1210 10.3390/genes11101210 33081197
    [Google Scholar]
  14. Matic I.Z. Ergün S. Crnogorac M.D. Misir S. Aliyazicioglu Y. Damjanovic A. Cytotoxic activities of L. extracts against 2D and 3D cancer cell models. Cytotechnology 2021 73 3 373 389 10.1007/s10616‑021‑00464‑5 34149173
    [Google Scholar]
  15. Agapouda A. Booker A. Kiss T. Hohmann J. Heinrich M. Csupor D. Quality control of Hypericum perforatum L. analytical challenges and recent progress. J. Pharm. Pharmacol. 2018 71 1 15 37 10.1111/jphp.12711 28266019
    [Google Scholar]
  16. Sarrou E. Giassafaki L.P. Masuero D. Perenzoni D. Vizirianakis I.S. Irakli M. Metabolomics assisted fingerprint of chemotypes and assessment of their cytotoxic activity. Food Chem. Toxicol. 2018 114 325 333 10.1016/j.fct.2018.02.057 29499307
    [Google Scholar]
  17. Rizzo P. Altschmied L. Ravindran B.M. Rutten T. D’Auria J.C. The Biochemical and Genetic Basis for the Biosynthesis of Bioactive Compounds in L., One of the Largest Medicinal Crops in Europe. Genes (Basel) 2020 11 10 10.3390/genes11101210 33081197
    [Google Scholar]
  18. Şebin M. Yılmaz N. Aydın A. Some Wild Mushrooms with High Antioxidant Capacity Exhibit Potent Anticancer Activity on Cancer Cells using the Apoptotic and Antimigration Cell Death Mechanisms. Anticancer. Agents Med. Chem. 2023 23 13 1567 1576 10.2174/1871520623666230331084010 37005536
    [Google Scholar]
  19. Apak R. Güçlü K. Özyürek M. Karademir S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004 52 26 7970 7981 10.1021/jf048741x 15612784
    [Google Scholar]
  20. Pargi M. Raviraj S.K.J. Narayanappa P. Urumarudappa S.K.J. Malleshappa P. Malleshappa K.H. Antiproliferative Effects of Fruit Extract and its Bioactive Fraction through Upregulation of p53/γH2AX Signals and G2/M Phase Arrest in MIA PaCa-2 Cells. Anti-Cancer Agent Me. 2022 22 17 2998 3008 10.2174/1871520622666220201103431 35105296
    [Google Scholar]
  21. Kandir S. Karakurt S. Gökçek-Saraç Ç. Karakurt S. Tannic acid elicits differential gene regulation in prostate cancer apoptosis. Acta Pharm. 2024 74 3 539 550 10.2478/acph‑2024‑0020 39279521
    [Google Scholar]
  22. Chen X. Li Z. Yi X. Jin C. Lidocaine inhibits the lung cancer progression through decreasing the HIST1H2BL levels via SIRT5 mediated succinylation. Sci. Rep. 2024 14 1 23310 10.1038/s41598‑024‑73966‑9 39375419
    [Google Scholar]
  23. Karakurt S. Abuşoğlu G. Arituluk Z.C. Comparison of anticarcinogenic properties of Viburnum opulus and its active compound p-coumaric acid on human colorectal carcinoma. Turk. J. Biol. 2020 44 5 252 263 10.3906/biy‑2002‑30 33110363
    [Google Scholar]
  24. Celik G. Semiz A. Karakurt S. Gencler-Ozkan A.M. Arslan S. Adali O. Sen A. Inhibitory action of Epilobium hirsutum extract and its constituent ellagic acid on drug-metabolizing enzymes. Eur. J. Drug Metab. Pharmacokinet. 2016 41 2 109 116 10.1007/s13318‑014‑0238‑1 25425117
    [Google Scholar]
  25. Celik-Turgut G. Olmez N. Koc T. Ozgun-Acar O. Semiz A. Dodurga Y. Lale Satiroglu-Tufan N. Sen A. Role of AHR, NF-kB and CYP1A1 crosstalk with the X protein of Hepatitis B virus in hepatocellular carcinoma cells. Gene 2023 853 147099 10.1016/j.gene.2022.147099 36476661
    [Google Scholar]
  26. Liang S. Jin J. Shen X. Jiang X. Li Y. He Q. Triptolide protects podocytes via autophagy in immunoglobulin A nephropathy. Exp. Ther. Med. 2018 16 3 2275 2280 10.3892/etm.2018.6480 30186468
    [Google Scholar]
  27. Filetti S. Durante C. Hartl D. Leboulleux S. Locati L.D. Newbold K. Papotti M.G. Berruti A. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2019 30 12 1856 1883 10.1093/annonc/mdz400 31549998
    [Google Scholar]
  28. Hostanska K. Reichling J. Bommer S. Weber M. Saller R. Hyperforin a constituent of St John’s wort (L.) extract induces apoptosis by triggering activation of caspases and with hypericin synergistically exerts cytotoxicity towards human malignant cell lines. Eur. J. Pharm. Biopharm. 2003 56 1 121 132 10.1016/S0939‑6411(03)00046‑8 12837490
    [Google Scholar]
  29. Eghdami A. Piri H. Sirati-Sabet M. Ilghari D. Investigation of anti proliferative properties and antioxidant activity of aerial parts ethanolic extract of Hypericum perforatum L. by breast cancer 4T1 cell lines. Int. J. Biosci. 2013 3 12 265 272 10.12692/ijb/3.12.265‑272
    [Google Scholar]
  30. Seyrekoğlu F. Temiz H. Effect of Extraction Conditions on the Phenolic Content and DPPH Radical Scavenging Activity of Hypericum perforatum L. Turkish Journal of Agriculture - Food Science and Technology 2020 8 1 226 229 10.24925/turjaf.v8i1.226‑229.3013
    [Google Scholar]
  31. Sarikurkcu C. Locatelli M. Tartaglia A. Ferrone V. Juszczak A.M. Ozer M.S. Tepe B. Tomczyk M. Enzyme and Biological Activities of the Water Extracts from the Plants Aesculus hippocastanum, Olea europaea and Hypericum perforatum That Are Used as Folk Remedies in Turkey. Molecules 2020 25 5 1202 10.3390/molecules25051202 32155959
    [Google Scholar]
  32. Eroglu E. Girgin S.N. A unique phenolic extraction method from olive oil macerate of using DMSO: Assessment of anticancer activity, LC-MS/MS profile, total phenolic content and antioxidant capacity. S. Afr. J. Bot. 2021 139 6 11 10.1016/j.sajb.2021.01.015
    [Google Scholar]
  33. Mojic M. Pristov J.B. Maksimovic-Ivanic D. Jones D.R. Stanic M. Mijatovic S. Extracellular iron diminishes anticancer effects of vitamin C: An study. Sci Rep-Uk 2014 4
    [Google Scholar]
  34. Ryszawy D. Pudełek M. Catapano J. Ciarach M. Setkowicz Z. Konduracka E. Madeja Z. Czyż J. High doses of sodium ascorbate interfere with the expansion of glioblastoma multiforme cells in vitro and in vivo. Life Sci. 2019 232 116657 10.1016/j.lfs.2019.116657 31306660
    [Google Scholar]
  35. Gönenç T.M. Ozturk M. Türkseven S.G. Kirmizibayrak P.B. Günal S. Yilmaz S. Hypericum perforatum L.: An overview of the anticancer potencies of the specimens collected from different ecological environments. Pak. J. Bot. 2020 52 3 1003 1010 10.30848/PJB2020‑3(24)
    [Google Scholar]
  36. Onder T.T. Gupta P.B. Mani S.A. Yang J. Lander E.S. Weinberg R.A. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res. 2008 68 10 3645 3654 10.1158/0008‑5472.CAN‑07‑2938 18483246
    [Google Scholar]
  37. Fuzio P. Napoli A. Ciampolillo A. Lattarulo S. Pezzolla A. Nuzziello N. Liuni S. Giorgino F. Maiorano E. Perlino E. Clusterin transcript variants expression in thyroid tumor: a potential marker of malignancy? BMC Cancer 2015 15 1 349 10.1186/s12885‑015‑1348‑0 25934174
    [Google Scholar]
  38. Arora C. Kaur D. Naorem L.D. Raghava G.P.S. Prognostic biomarkers for predicting papillary thyroid carcinoma patients at high risk using nine genes of apoptotic pathway. PLoS One 2021 16 11 e0259534 10.1371/journal.pone.0259534 34767591
    [Google Scholar]
  39. Wang Y. Yu H. Zhang J. Gao J. Ge X. Lou G. Hesperidin inhibits HeLa cell proliferation through apoptosis mediated by endoplasmic reticulum stress pathways and cell cycle arrest. BMC Cancer 2015 15 1 682 10.1186/s12885‑015‑1706‑y 26459308
    [Google Scholar]
  40. Zhao Z. Zou S. Guan X. Wang M. Jiang Z. Liu Z. Li C. Lin H. Liu X. Yang R. Gao Y. Wang X. Apolipoprotein E Overexpression Is Associated With Tumor Progression and Poor Survival in Colorectal Cancer. Front. Genet. 2018 9 650 10.3389/fgene.2018.00650 30631342
    [Google Scholar]
  41. Ito Y. Takano T. Miyauchi A. Apolipoprotein e expression in anaplastic thyroid carcinoma. Oncology 2006 71 5-6 388 393 10.1159/000107112 17690558
    [Google Scholar]
  42. Celi̇k E. Apoptotic and Anti-inflammatory Effects of Hypericum Perforatum Extract in Human Basal Cell Carcinoma TE 354.T Cell Line. Dicle Tip Derg. 2021 48 1 92 98 10.5798/dicletip.887378
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206340411241120051020
Loading
/content/journals/acamc/10.2174/0118715206340411241120051020
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Hypericum perforatum ; antioxidant capacity ; thyroid cancer ; apoptosis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test