Skip to content
2000
image of Synthesis and Evaluation of Optical Properties, SHP2 Inhibitory Activity, and Cellular Imaging for Novel 2-Quinolone Derivatives

Abstract

Introduction

Although the development of SHP2 inhibitors has made striking progress, there is no inhibitor in clinical evaluation because of the potential side effects induced by poor drug distribution. Fluorescence imaging technology is widely used in the process of diagnosis and treatment of diseases because of the advantages of rapid imaging and non-destructive detection and might provide a new way to explore the mechanism of drug-target interactions in intact tissue.

Methods

A series of 2-quinolone derivatives as fluorescent inhibitors against SHP2 were designed and synthesized, and their spectral properties and biological activities were evaluated in this report. The representative compound had excellent fluorescence properties (: 562 nm, Stokes shift: 170 nm, fluorescence quantum yield: 0.072) and optical stability.

Results

Moreover, compound 8A emitted a blue signal in SHP2WT U2OS cells and inhibited the SHP2 enzyme abilities (IC: 20.16 ± 0.95 μM) without the extra combination of suitable fluorophores, linker, or selective-activated molecules.

Conclusion

Therefore, we hope that compound 8A could act as a lead to develop novel, convenient, and bifunctional chemical tools to explore the mechanism of drug-target interactions in intact tissue and promote the integrated research progress of diagnosis and treatment of SHP2 related diseases.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206337347250219112715
2025-03-17
2025-05-29
Loading full text...

Full text loading...

References

  1. Wang K. Du Y. Zhang Z. He K. Cheng Z. Yin L. Dong D. Li C. Li W. Hu Z. Zhang C. Hui H. Chi C. Tian J. Fluorescence image-guided tumour surgery. Nat. Rev. Bioeng. 2023 1 3 161 179 10.1038/s44222‑022‑00017‑1
    [Google Scholar]
  2. Sun D. Dong G. Wu Y. Dong G. Du L. Li M. Sheng C. Fluorescent and theranostic probes for imaging nicotinamide phosphoribosyl transferase (NAMPT). Eur. J. Med. Chem. 2023 248 115080 10.1016/j.ejmech.2022.115080 36608458
    [Google Scholar]
  3. Pang Z. Schafroth M.A. Ogasawara D. Wang Y. Nudell V. Lal N.K. Yang D. Wang K. Herbst D.M. Ha J. Guijas C. Blankman J.L. Cravatt B.F. Ye L. In situ identification of cellular drug targets in mammalian tissue. Cell 2022 185 10 1793 1805.e17 10.1016/j.cell.2022.03.040 35483372
    [Google Scholar]
  4. Zhang C. Yang Y. Gao L.X. Gan S. Zhao T.T. Gao W. Li J. Zhu Y.L. Zhou Y.B. Wang W.L. Insights into the fluorescence and bio-activity of 2-quinolone derivatives against SHP2 from simulated and experimental aspects. J. Mol. Struct. 2025 1327 141217 10.1016/j.molstruc.2024.141217
    [Google Scholar]
  5. Shiroya U. Patel M. In-silico design, synthesis and evaluation of novel DNA-gyrase B inhibitors. Med. Chem. Res. 2013 22 11 5227 5235 10.1007/s00044‑013‑0518‑3
    [Google Scholar]
  6. Reck F. Alm R.A. Brassil P. Newman J.V. Ciaccio P. McNulty J. Barthlow H. Goteti K. Breen J. Comita-Prevoir J. Cronin M. Ehmann D.E. Geng B. Godfrey A.A. Fisher S.L. Novel N-linked aminopiperidine inhibitors of bacterial topoisomerase type II with reduced pK(a): Antibacterial agents with an improved safety profile. J. Med. Chem. 2012 55 15 6916 6933 10.1021/jm300690s 22779424
    [Google Scholar]
  7. Roussaki M. Hall B. Lima S.C. da Silva A.C. Wilkinson S. Detsi A. Synthesis and anti-parasitic activity of a novel quinolinone–chalcone series. Bioorg. Med. Chem. Lett. 2013 23 23 6436 6441 10.1016/j.bmcl.2013.09.047 24119553
    [Google Scholar]
  8. Mostafa M.A. Ismail M.M. Morsy J.M. Hassanin H.M. Abdelrazek M.M. Synthesis, characterization, anticancer, and antioxidant activities of chitosan Schiff bases bearing quinolinone or pyranoquinolinone and their silver nanoparticles derivatives. Polym. Bull. 2023 80 4 4035 4059 10.1007/s00289‑022‑04238‑7
    [Google Scholar]
  9. Detsi A. Bouloumbasi D. Prousis K.C. Koufaki M. Athanasellis G. Melagraki G. Afantitis A. Igglessi-Markopoulou O. Kontogiorgis C. Hadjipavlou-Litina D.J. Design and synthesis of novel quinolinone-3-aminoamides and their α-lipoic acid adducts as antioxidant and anti-inflammatory agents. J. Med. Chem. 2007 50 10 2450 2458 10.1021/jm061173n 17444626
    [Google Scholar]
  10. Shahin M.I. Roy J. Hanafi M. Wang D. Luesakul U. Chai Y. Muangsin N. Lasheen D.S. Abou El Ella D.A. Abouzid K.A. Neamati N. Synthesis and biological evaluation of novel 2-oxo-1,2-dihydroquinoline-4-carboxamide derivatives for the treatment of esophageal squamous cell carcinoma. Eur. J. Med. Chem. 2018 155 516 530 10.1016/j.ejmech.2018.05.042 29908444
    [Google Scholar]
  11. Bendell J.C. Kurkjian C. Infante J.R. Bauer T.M. Burris H.A. Greco F.A. Shih K.C. Thompson D.S. Lane C.M. Finney L.H. Jones S.F. A phase 1 study of the sachet formulation of the oral dual PI3K/mTOR inhibitor BEZ235 given twice daily (BID) in patients with advanced solid tumors. Invest. New Drugs 2015 33 2 463 471 10.1007/s10637‑015‑0218‑6 25707361
    [Google Scholar]
  12. Jemal A. Bray F. Center M.M. Ferlay J. Ward E. Forman D. Global cancer statistics. CA Cancer J. Clin. 2011 61 2 69 90 10.3322/caac.20107 21296855
    [Google Scholar]
  13. Rajapandi S. Nangan S. Natesan T. Kumar A. Dharman G. Pandeeswaran M. Verma D. Ubaidullah M. Pandit B. Dhaliwal N. Sehgal S.S. Rangappan R. Kousalya G.N. Ziziphus mauritiana-derived nitrogen-doped biogenic carbon dots: Eco-friendly catalysts for dye degradation and antibacterial applications. Chemosphere 2023 338 139584 10.1016/j.chemosphere.2023.139584 37478987
    [Google Scholar]
  14. Paramaguru G. Solomon R.V. Jagadeeswari S. Venuvanalingam P. Renganathan R. Tuning the photophysical properties of 2-quinolinone-based donor–acceptor molecules through N- versus O-Alkylation: Insights from experimental and theoretical investigations. Eur. J. Med. Chem. 2014 2014 753 766
    [Google Scholar]
  15. Han R.A. Jeon H.E. Kim W.K. Lee K.S. Ohn C. Park J.S. Kang S.N. Koo T.S. Hong B.K. Choi S. Synthesis and biological evaluation of quinolone derivatives as transthyretin amyloidogenesis inhibitors and fluorescence sensors. Bioorg. Med. Chem. 2022 53 116550 10.1016/j.bmc.2021.116550 34890995
    [Google Scholar]
  16. Hof P. Pluskey S. Dhe-Paganon S. Eck M.J. Shoelson S.E. Crystal structure of the tyrosine phosphatase SHP-2. Cell 1998 92 4 441 450 10.1016/S0092‑8674(00)80938‑1 9491886
    [Google Scholar]
  17. Neel B.G. Gu H. Pao L. The ‘Shp’ing news: SH2 domain-containing tyrosine phosphatases in cell signaling. Trends Biochem. Sci. 2003 28 6 284 293 10.1016/S0968‑0004(03)00091‑4 12826400
    [Google Scholar]
  18. Chan R.J. Feng G.S. PTPN11 is the first identified proto-oncogene that encodes a tyrosine phosphatase. Blood 2007 109 3 862 867 10.1182/blood‑2006‑07‑028829 17053061
    [Google Scholar]
  19. Li J. Jie H.B. Lei Y. Gildener-Leapman N. Trivedi S. Green T. Kane L.P. Ferris R.L. PD-1/SHP-2 inhibits Tc1/Th1 phenotypic responses and the activation of T cells in the tumor microenvironment. Cancer Res. 2015 75 3 508 518 10.1158/0008‑5472.CAN‑14‑1215 25480946
    [Google Scholar]
  20. Liu W.S. Zhao J.F. Guo X.J. Lu S.Z. Li W. Li W.Z. Design, synthesis, activity and molecular dynamics studies of 1,3,4-thiadiazole derivatives as selective allosteric inhibitors of SHP2 for the treatment of cancer. Eur. J. Med. Chem. 2023 258 115585 10.1016/j.ejmech.2023.115585 37390510
    [Google Scholar]
  21. LaMarche M.J. Acker M. Argintaru A. Bauer D. Boisclair J. Chan H. Chen C.H.T. Chen Y.N. Chen Z. Deng Z. Dore M. Dunstan D. Fan J. Fekkes P. Firestone B. Fodor M. Garcia-Fortanet J. Fortin P.D. Fridrich C. Giraldes J. Glick M. Grunenfelder D. Hao H.X. Hentemann M. Ho S. Jouk A. Kang Z.B. Karki R. Kato M. Keen N. Koenig R. LaBonte L.R. Larrow J. Liu G. Liu S. Majumdar D. Mathieu S. Meyer M.J. Mohseni M. Ntaganda R. Palermo M. Perez L. Pu M. Ramsey T. Reilly J. Sarver P. Sellers W.R. Sendzik M. Shultz M.D. Slisz J. Slocum K. Smith T. Spence S. Stams T. Straub C. Tamez V. Toure B.B. Towler C. Wang P. Wang H. Williams S.L. Yang F. Yu B. Zhang J.H. Zhu S. Identification of TNO155, an allosteric SHP2 inhibitor for the treatment of cancer. J. Med. Chem. 2020 63 22 13578 13594 10.1021/acs.jmedchem.0c01170 32910655
    [Google Scholar]
  22. Satheeshkumar R. Zhu R. Feng B. Huang C. Gao Y. Gao L.X. Shen C. Hou T.J. Xu L. Li J. Zhu Y.L. Zhou Y.B. Wang W.L. Synthesis and biological evaluation of heterocyclic bis-aryl amides as novel Src homology 2 domain containing protein tyrosine phosphatase-2 (SHP2) inhibitors. Bioorg. Med. Chem. Lett. 2020 30 11 127170 10.1016/j.bmcl.2020.127170 32273218
    [Google Scholar]
  23. Yan X. Zhang C. Gao L.X. Cao Z.T. Gan S.Y. Li J. Xiang D.J. Zhou Y.B. Wang W.L. Synthesis, fluorescence properties of novel thiazolo[3,2-b][1,2,4]triazol derivatives as potent SHP2 inhibitors and its uses in sensing for Fe3+ and cell imaging. J. Mol. Struct. 2025 1324 140960 10.1016/j.molstruc.2024.140960
    [Google Scholar]
  24. Xu L. Mu X. Liu M. Wang Z. Shen C. Mu Q. Feng B. Xu Y. Hou T. Gao L. Jiang H. Li J. Zhou Y. Wang W. Novel thieno[2,3-b]quinoline-procaine hybrid molecules: A new class of allosteric SHP-1 activators evolved from PTP1B inhibitors. Chin. Chem. Lett. 2023 34 8 108063 10.1016/j.cclet.2022.108063
    [Google Scholar]
  25. Meng X.D. Gao L.X. Wang Z.J. Feng B. Zhang C. Satheeshkumar R. Li J. Zhu Y.L. Zhou Y.B. Wang W.L. Synthesis and biological evaluation of 2,5-diaryl-1,3,4-oxadiazole derivatives as novel Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2) inhibitors. Bioorg. Chem. 2021 116 105384 10.1016/j.bioorg.2021.105384 34601294
    [Google Scholar]
  26. Yan X. Zhang C. Gao L.X. Liu M.M. Yang Y.T. Yu L.J. Zhou Y.B. Milaneh S. Zhu Y.L. Li J. Wang W.L. Novel imidazo[1,2,4] triazole derivatives: Synthesis, fluorescence, bioactivity for SHP1. Eur. J. Med. Chem. 2024 265 116027 10.1016/j.ejmech.2023.116027 38128236
    [Google Scholar]
  27. Melhuish W.H. Quantum efficiencies of fluorescence of organic substances: Effect of solvent and concentration of the fluorescent solute1. J. Phys. Chem. 1961 65 2 229 235 10.1021/j100820a009
    [Google Scholar]
  28. Meth-Cohn O. Narine B. Tarnowski B. Hayes R. Keyzad A. Rhouati S. Robinson A. A versatile new synthesis of quinolines and related fused pyridines. Part 9. Synthetic application of the 2-chloroquinoline-3-carbaldehydes. J. Chem. Soc., Perkin Trans. 1 1981 2509 2517 10.1039/p19810002509
    [Google Scholar]
  29. Xie J. Si X. Gu S. Wang M. Shen J. Li H. Shen J. Li D. Fang Y. Liu C. Zhu J. Allosteric inhibitors of SHP2 with therapeutic potential for cancer treatment. J. Med. Chem. 2017 60 24 10205 10219 10.1021/acs.jmedchem.7b01520 29155585
    [Google Scholar]
  30. Yu W.M. Guvench O. MacKerell A.D. Qu C.K. Identification of small molecular weight inhibitors of Src homology 2 domain-containing tyrosine phosphatase 2 (SHP-2) via in silico database screening combined with experimental assay. J. Med. Chem. 2008 51 23 7396 7404 10.1021/jm800229d 19007293
    [Google Scholar]
  31. Wang S. Li Z.R. Suo F.Z. Yuan X.H. Yu B. Liu H.M. Synthesis, structure-activity relationship studies and biological characterization of new [1,2,4]triazolo[1,5-a]pyrimidine-based LSD1/KDM1A inhibitors. Eur. J. Med. Chem. 2019 167 388 401 10.1016/j.ejmech.2019.02.039 30780087
    [Google Scholar]
  32. Meth-Cohn O. Narine B. A versatile new synthesis of quinolines, thienopyridines and related fused pyridines. Tetrahedron Lett. 1978 19 23 2045 2048 10.1016/S0040‑4039(01)94745‑8
    [Google Scholar]
  33. Bavali A. Parvin P. Mortazavi S.Z. Mohammadian M. M Pour, M.R. Red/blue spectral shifts of laser-induced fluorescence emission due to different nanoparticle suspensions in various dye solutions. Appl. Opt. 2014 53 24 5398 5409 10.1364/AO.53.005398 25321111
    [Google Scholar]
  34. Mardani K. Parvin P. Bavali A. Ehtesham A. Moafi A. Angular study of laser induced fluorescence emission of hybrid media based on Stern-Volmer formalism. OSA Continuum 2021 4 1 15 10.1364/OSAC.408779
    [Google Scholar]
  35. Song M. Park J.E. Park S.G. Lee D.H. Choi H.K. Park B.C. Ryu S.E. Kim J.H. Cho S. NSC-87877, inhibitor of SHP-1/2 PTPs, inhibits dual-specificity phosphatase 26 (DUSP26). Biochem. Biophys. Res. Commun. 2009 381 4 491 495 10.1016/j.bbrc.2009.02.069 19233143
    [Google Scholar]
  36. Nangan S. Natesan T. Sukmas W. Okhawilai M.J. Babu K. Tsuppayakorn-aek P. Bovornratanaraks T. Wongsalam T. Vimal V. Uyama H. Al-Enizi A.M. Kansal L. Sehgal S.S. Waste plastics derived nickel-palladium alloy filled carbon nanotubes for hydrogen evolution reaction. Chemosphere 2023 341 139982 10.1016/j.chemosphere.2023.139982 37648169
    [Google Scholar]
  37. Huang H. Liu L. Wang J. Zhou Y. Hu H. Ye X. Liu G. Xu Z. Xu H. Yang W. Wang Y. Peng Y. Yang P. Sun J. Yan P. Cao X. Tang B.Z. Aggregation caused quenching to aggregation induced emission transformation: a precise tuning based on BN-doped polycyclic aromatic hydrocarbons toward subcellular organelle specific imaging. Chem. Sci. 2022 13 11 3129 3139 10.1039/D2SC00380E 35414886
    [Google Scholar]
  38. Wang D. Lee M.M.S. Shan G. Kwok R.T.K. Lam J.W.Y. Su H. Cai Y. Tang B.Z. Highly efficient photosensitizers with far‐red/near‐infrared aggregation‐induced emission for in vitro and in vivo cancer theranostics. Adv. Mater. 2018 30 39 1802105 10.1002/adma.201802105 30133835
    [Google Scholar]
  39. Zhou T. Wang Q. Liu M. Liu Z. Zhu Z. Zhao X. Zhu W.H. An AIE‐based enzyme‐activatable fluorescence indicator for Western blot assay: Quantitative expression of proteins with reproducible stable signal and wide linear range. Aggregate 2021 2 2 e22 10.1002/agt2.22
    [Google Scholar]
  40. He X. Situ B. Gao M. Guan S. He B. Ge X. Li S. Tao M. Zou H. Tang B.Z. Zheng L. Stereotactic photodynamic therapy using a two‐photon AIE photosensitizer. Small 2019 15 50 1905080 10.1002/smll.201905080 31721436
    [Google Scholar]
  41. Thirumalaivasan N. Venkatesan P. Lai P.S. Wu S.P. In vitro and in vivo approach of hydrogen-sulfide-responsive drug release driven by azide-functionalized mesoporous silica nanoparticles. ACS Appl. Bio Mater. 2019 2 9 3886 3896 10.1021/acsabm.9b00481 35021323
    [Google Scholar]
  42. Lan H. Guo T. Dan F. Li Y. Tang Q. Ratiometric fluorescence chemodosimeter for hydrazine in aqueous solution and gas phase based on Quinoline-Malononitrile. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022 271 120892 10.1016/j.saa.2022.120892 35121469
    [Google Scholar]
  43. Yan L. Zhang S. Xie Y. Mu X. Zhu J. Recent progress in the development of fluorescent probes for the detection of hydrazine (N 2 H 4). Crit. Rev. Anal. Chem. 2022 52 1 210 229 10.1080/10408347.2020.1797464 32709211
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206337347250219112715
Loading
/content/journals/acamc/10.2174/0118715206337347250219112715
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test