Skip to content
2000
image of Anti-metastasis Effects and Mechanism of Action of Curcumin Analog (2E,6E)-2,6-bis(2,3-dimethoxybenzylidene) Cyclohexanone (DMCH) on the SW620 Colorectal Cancer Cell Line

Abstract

Background

Colorectal cancer (CRC) is the second-leading cause of cancer-related deaths. Curcumin has been reported to have suppressive effects in CRC and to address the physiological limitations of curcumin, a chemically synthesized curcuminoid analog, known as (2E,6E)-2,6-Bis (2,3-Dimethoxy benzylidine) cyclohexanone (DMCH), was developed and the anti-metastatic and anti-angiogenic properties of DMCH in colorectal cell line, SW620 were examined.

Methods

The anti-metastatic effects of DMCH were examined in the SW620 cell line by scratch assay, migration, and invasion assay, while for anti-angiogenesis properties of the cells, the mouse aortic ring assay and Human Umbilical Vein Endothelial Cells (HUVEC) assay were conducted. The mechanism of action was determined by microarray-based gene expression and protein analyses.

Results

The wound healing assay demonstrated that wound closure was decreased from 63.63 ± 1.44% at IC25 treatment to 4.54 ± 0.62% at IC50 treatment. Significant (p<0.05) reductions in the percentage of migrated and invaded cells were also observed in SW620, with values of 36.39 ± 3.86% and 44.81 ± 3.54%, respectively. Mouse aortic ring assays demonstrated a significant reduction in the formation of tubes and microvessels. Microarray and protein profiler results revealed that DMCH treatment has modulated several metastases, angiogenesis-related transcripts, and proteins like Epidermal Growth Factor Receptor (EGFR), TIMP-1 (TIMP Metallopeptidase Inhibitor 1) and Vascular Endothelial Growth Factor (VEGF).

Conclusion

DMCH could be a potential anti-cancer agent due to its capability to impede metastasis and angiogenesis activities of the SW620 colorectal cancer cell line regulating genes and protein in metastases and angiogenesis-related signalling pathways.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206336788241029050155
2025-01-06
2025-02-28
Loading full text...

Full text loading...

References

  1. Wong M.C.S. Huang J. Lok V. Wang J. Fung F. Ding H. Zheng Z.J. Differences in incidence and mortality trends of colorectal cancer worldwide based on sex, age, and anatomic location. Clin. Gastroenterol. Hepatol. 2021 19 5 955 966.e61 10.1016/j.cgh.2020.02.026 32088300
    [Google Scholar]
  2. Keum N. Giovannucci E. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies. Nat. Rev. Gastroenterol. Hepatol. 2019 16 12 713 732 10.1038/s41575‑019‑0189‑8 31455888
    [Google Scholar]
  3. Schliemann D. Paramasivam D. Dahlui M. Cardwell C.R. Somasundaram S. Ibrahim Tamin N.S.B. Donnelly C. Su T.T. Donnelly M. Change in public awareness of colorectal cancer symptoms following the be cancer alert campaign in the multi-ethnic population of Malaysia. BMC Cancer 2020 20 1 252 10.1186/s12885‑020‑06742‑3 32213173
    [Google Scholar]
  4. National strategic plan for colorectal cancer 2021-2025 2021 Available from: https://www.moh.gov.my/moh/resources/Penerbitan/Rujukan/NCD/Kanser/National_Strategic_Plan_for_Colorectal_Cancer_(NSPCRC)_2021-2025.pdf
  5. Morgan E. Arnold M. Gini A. Lorenzoni V. Cabasag C.J. Laversanne M. Vignat J. Ferlay J. Murphy N. Bray F. Global burden of colorectal cancer in 2020 and 2040: Incidence and mortality estimates from GLOBOCAN. Gut 2023 72 2 338 344 10.1136/gutjnl‑2022‑327736 36604116
    [Google Scholar]
  6. Xi Y. Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 2021 14 10 101174 10.1016/j.tranon.2021.101174 34243011
    [Google Scholar]
  7. Luan Y. Li X. Luan Y. Zhao R. Li Y. Liu L. Hao Y. Oleg Vladimir B. Jia L. Circulating lncRNA UCA1 promotes malignancy of colorectal cancer via the miR-143/MYO6 axis. Mol. Ther. Nucleic Acids 2020 19 790 803 10.1016/j.omtn.2019.12.009 31955010
    [Google Scholar]
  8. Österlund P. Ruotsalainen T. Peuhkuri K. Korpela R. Ollus A. Ikonen M. Joensuu H. Elomaa I. Lactose intolerance associated with adjuvant 5-fluorouracil-based chemotherapy for colorectal cancer. Clin. Gastroenterol. Hepatol. 2004 2 8 696 703 10.1016/S1542‑3565(04)00293‑9 15290663
    [Google Scholar]
  9. Liang G. Shao L. Wang Y. Zhao C. Chu Y. Xiao J. Zhao Y. Li X. Yang S. Exploration and synthesis of curcumin analogues with improved structural stability both in vitro and in vivo as cytotoxic agents. Bioorg. Med. Chem. 2009 17 6 2623 2631 10.1016/j.bmc.2008.10.044 19243951
    [Google Scholar]
  10. Adams B.K. Ferstl E.M. Davis M.C. Herold M. Kurtkaya S. Camalier R.F. Hollingshead M.G. Kaur G. Sausville E.A. Rickles F.R. Snyder J.P. Liotta D.C. Shoji M. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg. Med. Chem. 2004 12 14 3871 3883 10.1016/j.bmc.2004.05.006 15210154
    [Google Scholar]
  11. Liczbiński P. Michałowicz J. Bukowska B. Molecular mechanism of curcumin action in signaling pathways: Review of the latest research. Phytother. Res. 2020 34 8 1992 2005 10.1002/ptr.6663 32141677
    [Google Scholar]
  12. He Q. Liu C. Wang X. Rong K. Zhu M. Duan L. Zheng P. Mi Y. Exploring the mechanism of curcumin in the treatment of colon cancer based on network pharmacology and molecular docking. Front. Pharmacol. 2023 14 1102581 10.3389/fphar.2023.1102581 36874006
    [Google Scholar]
  13. Warsi W. Sardjiman S. Riyanto S. Synthesis and antioxidant activity of curcumin analogues. J. Chem. Pharm. Res. 2018 10 1 9 10.1080/10286020.2016.1235562
    [Google Scholar]
  14. Zamrus S.N.H. Akhtar M.N. Yeap S.K. Quah C.K. Loh W.S. Alitheen N.B. Zareen S. Tajuddin S.N. Hussin Y. Shah S.A.A. Design, synthesis and cytotoxic effects of curcuminoids on HeLa, K562, MCF-7 and MDA-MB-231 cancer cell lines. Chem. Cent. J. 2018 12 1 31 10.1186/s13065‑018‑0398‑1 29556774
    [Google Scholar]
  15. Hussin Y. Aziz M. Che Rahim N. Yeap S. Mohamad N. Masarudin M. Nordin N. Abd Rahman N. Yong C. Akhtar M. Zamrus S. Alitheen N. DK1 induces apoptosis via mitochondria-dependent signaling pathway in human colon carcinoma cell lines in vitro. Int. J. Mol. Sci. 2018 19 4 1151 10.3390/ijms19041151 29641445
    [Google Scholar]
  16. Aziz M.N.M. Rahim N.F.C. Hussin Y. Yeap S.K. Masarudin M.J. Mohamad N.E. Akhtar M.N. Osman M.A. Cheah Y.K. Alitheen N.B. Anti-metastatic and anti-angiogenic effects of curcumin analog DK1 on human osteosarcoma cells in vitro. Pharmaceuticals (Basel) 2021 14 6 532 10.3390/ph14060532 34204873
    [Google Scholar]
  17. Robinson T.P. Hubbard R.B. IV Ehlers T.J. Arbiser J.L. Goldsmith D.J. Bowen J.P. Synthesis and biological evaluation of aromatic enones related to curcumin. Bioorg. Med. Chem. 2005 13 12 4007 4013 10.1016/j.bmc.2005.03.054 15911313
    [Google Scholar]
  18. Faião-Flores F. Suarez J.A.Q. Maria-Engler S.S. Soto-Cerrato V. Pérez-Tomás R. Maria D.A. The curcumin analog DM-1 induces apoptotic cell death in melanoma. Tumour Biol. 2013 34 2 1119 1129 10.1007/s13277‑013‑0653‑y 23359272
    [Google Scholar]
  19. Rahim N.F.C. Hussin Y. Aziz M.N.M. Mohamad N.E. Yeap S.K. Masarudin M.J. Abdullah R. Akhtar M.N. Alitheen N.B. Cytotoxicity and apoptosis effects of curcumin analogue (2E,6E)-2,6-Bis(2,3-Dimethoxybenzylidine) Cyclohexanone (DMCH) on human colon cancer cells HT29 and SW620 in vitro. Molecules 2021 26 5 1261 10.3390/molecules26051261 33652694
    [Google Scholar]
  20. Nordin N. Yeap S.K. Rahman H.S. Zamberi N.R. Abu N. Mohamad N.E. How C.W. Masarudin M.J. Abdullah R. Alitheen N.B. In vitro cytotoxicity and anticancer effects of citral nanostructured lipid carrier on MDA MBA-231 human breast cancer cells. Sci. Rep. 2019 9 1 1614 10.1038/s41598‑018‑38214‑x 30733560
    [Google Scholar]
  21. Huang M. Lu J.J. Ding J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect. 2021 11 1 5 13 10.1007/s13659‑020‑00293‑7 33389713
    [Google Scholar]
  22. Otun S. Achilonu I. Odero-Marah V. Unveiling the potential of Muscadine grape Skin extract as an innovative therapeutic intervention in cancer treatment. J. Funct. Foods 2024 116 106146 10.1016/j.jff.2024.106146 38817632
    [Google Scholar]
  23. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020 83 3 770 803 10.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  24. Teijaro C.N. Adhikari A. Shen B. Challenges and opportunities for natural product discovery, production, and engineering in native producers versus heterologous hosts. J. Ind. Microbiol. Biotechnol. 2019 46 3-4 433 444 10.1007/s10295‑018‑2094‑5 30426283
    [Google Scholar]
  25. Lautié E. Russo O. Ducrot P. Boutin J.A. Unraveling plant natural chemical diversity for drug discovery purposes. Front. Pharmacol. 2020 11 397 10.3389/fphar.2020.00397 32317969
    [Google Scholar]
  26. Evidente A. Advances on anticancer fungal metabolites: Sources, chemical and biological activities in the last decade (2012–2023). Nat. Prod. Bioprospect. 2024 14 1 31 10.1007/s13659‑024‑00452‑0 38743184
    [Google Scholar]
  27. Gera M. Sharma N. Ghosh M. Huynh D.L. Lee S.J. Min T. Kwon T. Jeong D.K. Nanoformulations of curcumin: An emerging paradigm for improved remedial application. Oncotarget 2017 8 39 66680 66698 10.18632/oncotarget.19164 29029547
    [Google Scholar]
  28. Tomeh M.A. Hadianamrei R. Zhao X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci. 2019 20 5 1033 10.3390/ijms20051033 30818786
    [Google Scholar]
  29. Anthwal A. Thakur B.K. Rawat M.S.M. Rawat D.S. Tyagi A.K. Aggarwal B.B. Synthesis, characterization and in vitro anticancer activity of C-5 curcumin analogues with potential to inhibit TNF-α-induced NF-κB activation. BioMed Res. Int. 2014 2014 1 10 10.1155/2014/524161 25157362
    [Google Scholar]
  30. Aravind S.R. Krishnan L.K. Curcumin-albumin conjugates as an effective anti-cancer agent with immunomodulatory properties. Int. Immunopharmacol. 2016 34 78 85 10.1016/j.intimp.2016.02.010 26927614
    [Google Scholar]
  31. Joshi P. Verma K. Kumar Semwal D. Dwivedi J. Sharma S. Mechanism insights of curcumin and its analogues in cancer: An update. Phytother. Res. 2023 37 12 5435 5463 10.1002/ptr.7983 37649266
    [Google Scholar]
  32. Kabir M.T. Rahman M.H. Akter R. Behl T. Kaushik D. Mittal V. Pandey P. Akhtar M.F. Saleem A. Albadrani G.M. Kamel M. Khalifa S.A.M. El-Seedi H.R. Abdel-Daim M.M. Potential role of curcumin and its nanoformulations to treat various types of cancers. Biomolecules 2021 11 3 392 10.3390/biom11030392 33800000
    [Google Scholar]
  33. Kunnumakkara A.B. Bordoloi D. Harsha C. Banik K. Gupta S.C. Aggarwal B.B. Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clin. Sci. (Lond.) 2017 131 15 1781 1799 10.1042/CS20160935 28679846
    [Google Scholar]
  34. Brabletz T. Kalluri R. Nieto M.A. Weinberg R.A. EMT in cancer. Nat. Rev. Cancer 2018 18 2 128 134 10.1038/nrc.2017.118 29326430
    [Google Scholar]
  35. Ganesh K Massagué J. Targeting metastatic cancer. Nat Med. 2021 27 1 34 44 10.1038/s41591‑020‑01195‑4
    [Google Scholar]
  36. Lambert A.W. Pattabiraman D.R. Weinberg R.A. Emerging biological principles of metastasis. Cell 2017 168 4 670 691 10.1016/j.cell.2016.11.037 28187288
    [Google Scholar]
  37. Tasdogan A. Ubellacker J.M. Morrison S.J. Redox regulation in cancer cells during metastasis. Cancer Discov. 2021 11 11 2682 2692 10.1158/2159‑8290.CD‑21‑0558 34649956
    [Google Scholar]
  38. Karimian H. Mohan S. Moghadamtousi S. Fadaeinasab M. Razavi M. Arya A. Kamalidehghan B. Ali H. Noordin M. Tanacetum polycephalum (L.) Schultz-Bip. induces mitochondrial-mediated apoptosis and inhibits migration and invasion in MCF7 cells. Molecules 2014 19 7 9478 9501 10.3390/molecules19079478 24995928
    [Google Scholar]
  39. Meiyanto E. Husnaa U. Kastian R.F. Putri H. Larasati Y.A. Khumaira A. Pamungkas D.D.P. Jenie R.I. Kawaichi M. Lestari B. Yokoyama T. Kato J. The target differences of anti-tumorigenesis potential of curcumin and its analogues against HER-2 positive and triple-negative breast cancer cells. Adv. Pharm. Bull. 2020 11 1 188 196 10.34172/apb.2021.020 33747866
    [Google Scholar]
  40. Shaw P. Dwivedi S.K.D. Bhattacharya R. Mukherjee P. Rao G. VEGF signaling: Role in angiogenesis and beyond. Biochim. Biophys. Acta Rev. Cancer 2024 1879 2 189079 10.1016/j.bbcan.2024.189079 38280470
    [Google Scholar]
  41. Yoo S.Y. Kwon S.M. Angiogenesis and its therapeutic opportunities. Mediators Inflamm. 2013 2013 1 11 10.1155/2013/127170 23983401
    [Google Scholar]
  42. Guo C. Wang L. Jiang B. Shi D. Bromophenol curcumin analog BCA-5 exerts an antiangiogenic effect through the HIF-1α/VEGF/Akt signaling pathway in human umbilical vein endothelial cells. Anticancer Drugs 2018 29 10 965 974 10.1097/CAD.0000000000000671 30335638
    [Google Scholar]
  43. Wei Q. Zhang Y. Flavonoids with anti-angiogenesis function in cancer. Molecules 2024 29 7 1570 10.3390/molecules29071570 38611849
    [Google Scholar]
  44. Zhang H.H. Zhang Y. Cheng Y.N. Gong F.L. Cao Z.Q. Yu L.G. Guo X.L. Metformin incombination with curcumin inhibits the growth, metastasis, and angiogenesis of hepatocellular carcinoma in vitro and in vivo. Mol. Carcinog. 2018 57 1 44 56 10.1002/mc.22718 28833603
    [Google Scholar]
  45. Fakhri S. Moradi S.Z. Faraji F. Kooshki L. Webber K. Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: A comprehensive and critical review. Cancer Metastasis Rev. 2024 43 1 501 574 10.1007/s10555‑023‑10136‑9 37792223
    [Google Scholar]
  46. Eslami S.S. Jafari D. Ghotaslou A. Amoupour M. Asri Kojabad A. Jafari R. Mousazadeh N. Tarighi P. Sadeghizadeh M. Combined treatment of dendrosomal-curcumin and daunorubicin synergistically inhibit cell proliferation, migration and induce apoptosis in A549 lung cancer cells. Adv. Pharm. Bull. 2022 13 3 539 550 10.34172/apb.2023.050 37646049
    [Google Scholar]
  47. Kamato D. Burch M.L. Piva T.J. Rezaei H.B. Rostam M.A. Xu S. Zheng W. Little P.J. Osman N. Transforming growth factor-β signalling: Role and consequences of Smad linker region phosphorylation. Cell. Signal. 2013 25 10 2017 2024 10.1016/j.cellsig.2013.06.001 23770288
    [Google Scholar]
  48. Shi Y. Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003 113 6 685 700 10.1016/S0092‑8674(03)00432‑X 12809600
    [Google Scholar]
  49. Pang M-F. Georgoudaki A-M. Lambut L. Johansson J. Tabor V. Hagikura K. Jin Y. Jansson M. Alexander J.S. Nelson C.M. Jakobsson L. Betsholtz C. Sund M. Karlsson M.C.I. Fuxe J. TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene 2016 35 6 748 760 10.1038/onc.2015.133 25961925
    [Google Scholar]
  50. Li Y.S. Ni S.Y. Meng Y. Shi X.L. Zhao X.W. Luo H.H. Li X. Angiotensin II facilitates fibrogenic effect of TGF-β1 through enhancing the down-regulation of BAMBI caused by LPS: A new pro-fibrotic mechanism of angiotensin II. PLoS One 2013 8 10 e76289 10.1371/journal.pone.0076289 24155898
    [Google Scholar]
  51. Ayati A. Moghimi S. Salarinejad S. Safavi M. Pouramiri B. Foroumadi A. A review on progression of epidermal growth factor receptor (EGFR) inhibitors as an efficient approach in cancer targeted therapy. Bioorg Chem. 2020 99 103811
    [Google Scholar]
  52. Cheng W.L. Feng P.H. Lee K.Y. Chen K.Y. Sun W.L. Van Hiep N. Luo C.S. Wu S.M. The role of EREG/EGFR pathway in tumor progression. Int. J. Mol. Sci. 2021 22 23 12828 10.3390/ijms222312828 34884633
    [Google Scholar]
  53. London M. Gallo E. Epidermal growth factor receptor (EGFR) involvement in epithelial‐derived cancers and its current antibody‐based immunotherapies. Cell Biol. Int. 2020 44 6 1267 1282 10.1002/cbin.11340 32162758
    [Google Scholar]
  54. Chen A. Xu J. Johnson A.C. Curcumin inhibits human colon cancer cell growth by suppressing gene expression of epidermal growth factor receptor through reducing the activity of the transcription factor Egr-1. Oncogene 2006 25 2 278 287 10.1038/sj.onc.1209019 16170359
    [Google Scholar]
  55. Kallingal A. Thankachan S. Venkatesh T. Kabbekodu S.P. Suresh P.S. Role of miR-15b/16–2 cluster network in endometrial cancer: An in silico pathway and prognostic analysis. Meta Gene 2022 31 101018 10.1016/j.mgene.2022.101018
    [Google Scholar]
  56. Daulat A.M. Wagner M.S. Walton A. Baudelet E. Audebert S. Camoin L. Borg J.P. The tumor suppressor SCRIB is a negative modulator of the Wnt/β‐Catenin signaling pathway. Proteomics 2019 19 21-22 1800487 10.1002/pmic.201800487 31513346
    [Google Scholar]
  57. Xu H. Yan X. Zhu H. Kang Y. Luo W. Zhao J. Zhou K. Liu X. Ye L. Zhou Q. Li S. Zhao M. Wang L. Zhu B. Liu W. Li J. Jiang X. Ren C. TBL1X and Flot2 form a positive feedback loop to promote metastasis in nasopharyngeal carcinoma. Int. J. Biol. Sci. 2022 18 3 1134 1149 10.7150/ijbs.68091 35173544
    [Google Scholar]
  58. Ramadoss S. Li J. Ding X. Al Hezaimi K. Wang C.Y. Transducin β-like protein 1 recruits nuclear factor κB to the target gene promoter for transcriptional activation. Mol. Cell. Biol. 2011 31 5 924 934 10.1128/MCB.00576‑10 21189284
    [Google Scholar]
  59. Webb A.H. Gao B.T. Goldsmith Z.K. Irvine A.S. Saleh N. Lee R.P. Lendermon J.B. Bheemreddy R. Zhang Q. Brennan R.C. Johnson D. Steinle J.J. Wilson M.W. Morales-Tirado V.M. Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma. BMC Cancer 2017 17 1 434 10.1186/s12885‑017‑3418‑y 28633655
    [Google Scholar]
  60. Li Z Jing Q Wu L Chen J Huang M Qin Y. The prognostic and diagnostic value of tissue inhibitor of metalloproteinases gene family and potential function in gastric cancer. J Cancer. 2021 12 13 4086 4098 10.7150/jca.57808
    [Google Scholar]
  61. Song G. Xu S. Zhang H. Wang Y. Xiao C. Jiang T. Wu L. Zhang T. Sun X. Zhong L. Zhou C. Wang Z. Peng Z. Chen J. Wang X. TIMP1 is a prognostic marker for the progression and metastasis of colon cancer through FAK-PI3K/AKT and MAPK pathway. J. Exp. Clin. Cancer Res. 2016 35 1 148 10.1186/s13046‑016‑0427‑7 27644693
    [Google Scholar]
  62. Holten-Andersen MN Hansen U Brünner N Nielsen HJ Illemann M Nielsen BS Localization of tissue inhibitor of metalloproteinases 1 (TIMP-1) in human colorectal adenoma and adenocarcinoma. Int J Cancer. 206 2005 113 2 198 10.1002/ijc.20566
    [Google Scholar]
  63. Herszényi L. TIMP-1: A strong player in colorectal cancer. J. Gastrointestin. Liver Dis. 2014 23 4 365 366 10.15403/jgld.2014.1121.234.tmp1 25531992
    [Google Scholar]
  64. Toraya S. Uehara O. Hiraki D. Harada F. Neopane P. Morikawa T. Takai R. Yoshida K. Matsuoka H. Kitaichi N. Chiba I. Abiko Y. Curcumin inhibits the expression of proinflammatory mediators and MMP-9 in gingival epithelial cells stimulated for a prolonged period with lipopolysaccharides derived from Porphyromonas gingivalis. Odontology 2020 108 1 16 24 10.1007/s10266‑019‑00432‑8 31087163
    [Google Scholar]
  65. Ong C.P. Lee W.L. Tang Y.Q. Yap W.H. Honokiol: A review of its anticancer potential and mechanisms. Cancers (Basel) 2019 12 1 48 10.3390/cancers12010048 31877856
    [Google Scholar]
  66. Ghalehbandi S. Yuzugulen J. Pranjol M.Z.I. Pourgholami M.H. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur. J. Pharmacol. 2023 949 175586 10.1016/j.ejphar.2023.175586 36906141
    [Google Scholar]
  67. Elebiyo T.C. Rotimi D. Evbuomwan I.O. Maimako R.F. Iyobhebhe M. Ojo O.A. Oluba O.M. Adeyemi O.S. Reassessing vascular endothelial growth factor (VEGF) in anti-angiogenic cancer therapy. Cancer Treat. Res. Commun. 2022 32 100620 10.1016/j.ctarc.2022.100620 35964475
    [Google Scholar]
  68. Kang Y. Li H. Liu Y. Li Z. Regulation of VEGF-A expression and VEGF-A-targeted therapy in malignant tumors. J. Cancer Res. Clin. Oncol. 2024 150 5 221 10.1007/s00432‑024‑05714‑5 38687357
    [Google Scholar]
  69. Aguiar R.B. Moraes J.Z. Exploring the immunological mechanisms underlying the anti-vascular endothelial growth factor activity in tumors. Front. Immunol. 2019 10 1023 10.3389/fimmu.2019.01023 31156623
    [Google Scholar]
  70. Pan Z. Zhuang J. Ji C. Cai Z. Liao W. Huang Z. Curcumin inhibits hepatocellular carcinoma growth by targeting VEGF expression. Oncol. Lett. 2018 15 4 4821 4826 Curcumin inhibits hepatocellular carcinoma growth by targeting VEGF expression. 10.3892/ol.2018.7988
    [Google Scholar]
  71. Da W. Zhang J. Zhang R. Zhu J. Curcumin inhibits the lymphangiogenesis of gastric cancer cells by inhibiton of HMGB1/VEGF-D signaling. Int. J. Immunopathol. Pharmacol. 2019 33 2058738419861600 10.1177/2058738419861600 31266378
    [Google Scholar]
  72. Li X. Fang Q. Tian X. Wang X. Ao Q. Hou W. Tong H. Fan J. Bai S. Curcumin attenuates the development of thoracic aortic aneurysm by inhibiting VEGF expression and inflammation. Mol. Med. Rep. 2017 16 4 4455 4462 10.3892/mmr.2017.7169 28791384
    [Google Scholar]
  73. Gligorijević N. Dobrijević Z. Šunderić M. Robajac D. Četić D. Penezić A. Miljuš G. Nedić O. The insulin-like growth factor system and colorectal cancer. Life (Basel) 2022 12 8 1274 10.3390/life12081274 36013453
    [Google Scholar]
  74. Huang B.L. Wei L.F. Lin Y.W. Huang L.S. Qu Q.Q. Li X.H. Chu L.Y. Xu Y.W. Wang W.D. Peng Y.H. Wu F.C. Serum IGFBP-1 as a promising diagnostic and prognostic biomarker for colorectal cancer. Sci. Rep. 2024 14 1 1839 10.1038/s41598‑024‑52220‑2 38246959
    [Google Scholar]
  75. Yang S.F. Yeh C.B. Chou Y.E. Lee H.L. Liu Y.F. Serpin peptidase inhibitor (SERPINB5) haplotypes are associated with susceptibility to hepatocellular carcinoma. Sci. Rep. 2016 6 1 26605 10.1038/srep26605 27221742
    [Google Scholar]
  76. Zhang P. Li X. He Q. Zhang L. Song K. Yang X. He Q. Wang Y. Hong X. Ma J. Liu N. TRIM21–SERPINB5 aids GMPS repression to protect nasopharyngeal carcinoma cells from radiation-induced apoptosis. J. Biomed. Sci. 2020 27 1 30 10.1186/s12929‑020‑0625‑7 32005234
    [Google Scholar]
  77. Liu B.X. Xie Y. Zhang J. Zeng S. Li J. Tao Q. Yang J. Chen Y. Zeng C. SERPINB5 promotes colorectal cancer invasion and migration by promoting EMT and angiogenesis via the TNF-α/NF-κB pathway. Int. Immunopharmacol. 2024 131 111759 10.1016/j.intimp.2024.111759 38460302
    [Google Scholar]
  78. Goulet B. Kennette W. Ablack A. Postenka C.O. Hague M.N. Mymryk J.S. Tuck A.B. Giguère V. Chambers A.F. Lewis J.D. Nuclear localization of maspin is essential for its inhibition of tumor growth and metastasis. Lab. Invest. 2011 91 8 1181 1187 10.1038/labinvest.2011.66 21502940
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206336788241029050155
Loading
/content/journals/acamc/10.2174/0118715206336788241029050155
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: curcumin analog ; DMCH ; metastasis ; Colon cancer ; angiogenesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test