Skip to content
2000
image of Cytotoxic Effects Of Lecaniodiscus Cupanioides (Planch.) Extract and Triterpenoids-derived Gold Nanoparticles On MCF-7 Breast Cancer Cell Lines

Abstract

Background

The prevalent disease known as breast cancer has a significant impact on both men's and women's health and quality of life.

Aim

The aim of this study was to explore the potential roles of (planch.) extract and triterpenoid-derived gold nanoparticles (AuNPs) in cancer therapy, specifically targeting MCF-7 breast cancer cell lines.

Methods

Gold nanoparticles were synthesized utilizing triterpenoid (ZJ-AuNPs) and leaf extract from (LC-AuNPs). Fourier transform infrared spectroscopy (FTIR), Dynamic light scattering (DLS), High-resolution transmission electron microscopy (HRTEM), and UV-vis spectroscopy were employed to characterize the nanoparticles. Additionally, the MTT assay was used to assess the impact of AuNPs on cancer cell viability using MCF-7 breast cancer cell lines.

Results

Analysis of ZJ-AuNPs and LC-AuNPs revealed DLS zeta potentials of -31.8 and -35.8 mV, respectively, and a corresponding UV-vis absorption maxima at 540 and 550 nm. Also, the ZJ-AuNPs and LC-AuNPs had respective zeta-sizes that ranged from 25.84 to 35.98 nm and polydispersive index values between 0.2360 and 0.773.Furthermore, the presence of the chemical groups -OH and -NH was shown to be necessary for the green method of capping and reducing the gold nanoparticles. Nevertheless, a significant decrease in cell viability percentages was noted in the MTT experiment, accompanied by an increase in the quantity or concentration of the nanoparticles for both ZJ-AuNPs and LC-AuNPs.

Conclusion

Given the data obtained in this study, the biosynthesized ZJ-AuNPs and LC-AuNPs were shown to possess potent cytotoxic effects on breast cancer cells. Hence, they may be valuable tools in the development of new cancer chemotherapy drugs.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206325529241004064307
2025-01-27
2025-05-01
Loading full text...

Full text loading...

References

  1. Bertucci F. Finetti P. Birnbaum D. Basal breast cancer: A complex and deadly molecular subtype. Curr. Mol. Med. 2012 12 1 96 110 10.2174/156652412798376134 22082486
    [Google Scholar]
  2. Bray F. Jemal A. Grey N. Ferlay J. Forman D. Global cancer transitions according to the Human Development Index (2008–2030): A population-based study. Lancet Oncol. 2012 13 8 790 801 10.1016/S1470‑2045(12)70211‑5 22658655
    [Google Scholar]
  3. Arzanova E. Mayrovitz H.N. The Epidemiology of Breast Cancer. Breast Cancer. Exon Publications 2022 10.36255/exon‑publications‑breast‑cancer‑epidemiology
    [Google Scholar]
  4. Arnold M. Morgan E. Rumgay H. Mafra A. Singh D. Laversanne M. Vignat J. Gralow J.R. Cardoso F. Siesling S. Soerjomataram I. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022 66 15 23 10.1016/j.breast.2022.08.010 36084384
    [Google Scholar]
  5. Akram M. Iqbal M. Daniyal M. Khan A.U. Awareness and current knowledge of breast cancer. Biol. Res. 2017 50 1 33 10.1186/s40659‑017‑0140‑9 28969709
    [Google Scholar]
  6. Mullaguri S.C. Mungamuri S.K. Puligundla K.C. Annamaneni S. Kancha R.K. Breast Cancer. Biomedical Aspects of Solid Cancers. Kancha R.K. Springer 2024 15 27 10.1007/978‑981‑97‑1802‑3_2
    [Google Scholar]
  7. Sun T. Zhang Y.S. Pang B. Hyun D.C. Yang M. Xia Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed. 2014 53 46 12320 12364 10.1002/anie.201403036 25294565
    [Google Scholar]
  8. Puri A. Mohite P. Maitra S. Subramaniyan V. Kumarasamy V. Uti D.E. Sayed A.A. El-Demerdash F.M. Algahtani M. El-kott A.F. Shati A.A. Albaik M. Abdel-Daim M.M. Atangwho I.J. From nature to nanotechnology: The interplay of traditional medicine, green chemistry, and biogenic metallic phytonanoparticles in modern healthcare innovation and sustainability. Biomed. Pharmacother. 2024 170 116083 10.1016/j.biopha.2023.116083 38163395
    [Google Scholar]
  9. Ojo O. Ndinteh D.T. Traditional uses, biological activities, and phytochemicals of Lecaniodiscus cupanioides : a review. Physical Sciences Reviews 2023 8 4 549 565 10.1515/psr‑2020‑0207
    [Google Scholar]
  10. Adesegun S.A. Coker H.A. Hamann M.T. Anti-cancerous triterpenoid saponins from Lecaniodiscus cupanioides. J. Nat. Prod. (Gorakhpur) 2014 7 155 161 27867280
    [Google Scholar]
  11. Alayande K.A. Ashafa A.O.T. Evaluation of cytotoxic effects and antimicrobial activities of Lecaniodiscus cupanioides (Planch.) leaf extract. Trans. R. Soc. S. Afr. 2017 72 1 33 38 10.1080/0035919X.2016.1214851
    [Google Scholar]
  12. Albahri G. Badran A. Abdel Baki Z. Alame M. Hijazi A. Daou A. Baydoun E. Potential anti-tumorigenic properties of diverse medicinal plants against the majority of common types of cancer. Pharmaceuticals (Basel) 2024 17 5 574 10.3390/ph17050574 38794144
    [Google Scholar]
  13. Prasher P. Sharma M. Sharma A.K. Sharifi-Rad J. Calina D. Hano C. Cho W.C. Key oncologic pathways inhibited by Erinacine A: A perspective for its development as an anticancer molecule. Biomed. Pharmacother. 2023 160 114332 10.1016/j.biopha.2023.114332 36736282
    [Google Scholar]
  14. Almatroudi A. Allemailem K.S. Alwanian W.M. Alharbi B.F. Alrumaihi F. Khan A.A. Almatroodi S.A. Rahmani A.H. Effects and mechanisms of kaempferol in the management of cancers through modulation of inflammation and signal transduction pathways. Int. J. Mol. Sci. 2023 24 10 8630 10.3390/ijms24108630 37239974
    [Google Scholar]
  15. Nigam M. Mishra A.P. Deb V.K. Dimri D.B. Tiwari V. Bungau S.G. Bungau A.F. Radu A.F. Evaluation of the association of chronic inflammation and cancer: Insights and implications. Biomed. Pharmacother. 2023 164 115015 10.1016/j.biopha.2023.115015 37321055
    [Google Scholar]
  16. Basha N.J. Small molecules as anti‐inflammatory agents: Molecular mechanisms and heterocycles as inhibitors of signaling pathways. ChemistrySelect 2023 8 9 e202204723 10.1002/slct.202204723
    [Google Scholar]
  17. Elekofehinti O.O. Iwaloye O. Olawale F. Ariyo E.O. Saponins in cancer treatment: Current progress and future prospects. Pathophysiology 2021 28 2 250 272 10.3390/pathophysiology28020017 35366261
    [Google Scholar]
  18. Ren Y. Kinghorn A.D. Natural product triterpenoids and their semi-synthetic derivatives with potential anticancer activity. Planta Med. 2019 85 11/12 802 814 10.1055/a‑0832‑2383 30658371
    [Google Scholar]
  19. Rodríguez-Hernández D. Demuner A.J. Barbosa L.C.A. Csuk R. Heller L. Hederagenin as a triterpene template for the development of new antitumor compounds. Eur. J. Med. Chem. 2015 105 57 62 10.1016/j.ejmech.2015.10.006 26476750
    [Google Scholar]
  20. Fakhri S. Abdian S. Moradi S.Z. Delgadillo B.E. Fimognari C. Bishayee A. Marine compounds, mitochondria, and malignancy: A therapeutic nexus. Mar. Drugs 2022 20 10 625 10.3390/md20100625 36286449
    [Google Scholar]
  21. Hussain A. Bourguet-Kondracki M.L. Majeed M. Ibrahim M. Imran M. Yang X.W. Ahmed I. Altaf A.A. Khalil A.A. Rauf A. Wilairatana P. Hemeg H.A. Ullah R. Green I.R. Ali I. Shah S.T.A. Hussain H. Marine life as a source for breast cancer treatment: A comprehensive review. Biomed. Pharmacother. 2023 159 114165 10.1016/j.biopha.2022.114165 36634590
    [Google Scholar]
  22. Rai T. Kaushik N. Malviya R. Sharma P.K. A review on marine source as anticancer agents. J. Asian Nat. Prod. Res. 2024 26 4 415 451 10.1080/10286020.2023.2249825 37675579
    [Google Scholar]
  23. Greco G. Pellicioni V. Cruz-Chamorro I. Attisani G. Stefanelli C. Fimognari C. Marine-derived compounds targeting topoisomerase ii in cancer cells: A review. Mar. Drugs 2022 20 11 674 10.3390/md20110674 36354997
    [Google Scholar]
  24. Nasrollahzadeh M. Sajjadi M. Soufi G.J. Iravani S. Varma R.S. Nanomaterials and nanotechnology-associated innovations against viral infections with a focus on coronaviruses. Nanomaterials (Basel) 2020 10 6 1072 10.3390/nano10061072 32486364
    [Google Scholar]
  25. Kumar M.S. Rajni Y. Prasad S.T. Recent advances in nanotechnology. Int. J. Nanomater. Nanotechnol. Nanomed. 2023 9 15 23 10.17352/2455‑3492.000053
    [Google Scholar]
  26. Баснукаев И.Ш. Исламов А.А. Мусостова Д.Ш. Nanotechnologies and nanomaterials Technical sciences 2021 Available from: https://gstou.ru/science/ggntu-works.php(accessed on 28-9-2024)
    [Google Scholar]
  27. Gidde N.D. Nitalikar M.M. Raut I.D. Nanocomposites: A review on current status. Asian Journal of Pharmacy and Technology 2021 11 231 237 10.52711/2231‑5713.2021.00038
    [Google Scholar]
  28. Synthesis of Bionanomaterials for Biomedical Applications. Elsevier 2023
    [Google Scholar]
  29. Deepak P. Vadivel A. Kamaraj C. Govindasamy B. Aiswarya D. Perumal P. Chemical and green synthesis of nanoparticles and their efficacy on cancer cells. Green Synthesis, Characterization and Applications of Nanoparticles Micro and Nano Technologies Elsevier 2019 10.1016/B978‑0‑08‑102579‑6.00016‑2
    [Google Scholar]
  30. El-Saadony M.T. Saad A.M. Taha T.F. Najjar A.A. Zabermawi N.M. Nader M.M. AbuQamar S.F. El-Tarabily K.A. Salama A. Selenium nanoparticles from Lactobacillus paracasei HM1 capable of antagonizing animal pathogenic fungi as a new source from human breast milk. Saudi J. Biol. Sci. 2021 28 12 6782 6794 10.1016/j.sjbs.2021.07.059 34866977
    [Google Scholar]
  31. Siddiqi K.S. Husen A. Fabrication of metal nanoparticles from fungi and metal salts: Scope and application. Nanoscale Res. Lett. 2016 11 1 98 10.1186/s11671‑016‑1311‑2 26909778
    [Google Scholar]
  32. Mohanpuria P. Rana N.K. Yadav S.K. Biosynthesis of nanoparticles: Technological concepts and future applications. J. Nanopart. Res. 2008 10 3 507 517 10.1007/s11051‑007‑9275‑x
    [Google Scholar]
  33. Rauwel P. Küünal S. Ferdov S. Rauwel E. A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM. Adv. Mater. Sci. Eng. 2015 2015 1 9 10.1155/2015/682749
    [Google Scholar]
  34. Mishra S. Sahoo S. Kumar Sahoo P. Kumar Sahoo N. Recent advancements in the plant and microbial assisted green synthesis of nanomaterials. Mater. Today Proc. 2023 2023 S2214785323050502 10.1016/j.matpr.2023.10.144
    [Google Scholar]
  35. Huston M. DeBella M. DiBella M. Gupta A. Green synthesis of nanomaterials. Nanomaterials (Basel) 2021 11 8 2130 10.3390/nano11082130 34443960
    [Google Scholar]
  36. Jeevanandam J. Kiew S.F. Boakye-Ansah S. Lau S.Y. Barhoum A. Danquah M.K. Rodrigues J. Green approaches for the synthesis of metal and metal oxide nanoparticles using microbial and plant extracts. Nanoscale 2022 14 7 2534 2571 10.1039/D1NR08144F 35133391
    [Google Scholar]
  37. Altammar K.A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Front. Microbiol. 2023 14 1155622 10.3389/fmicb.2023.1155622 37180257
    [Google Scholar]
  38. Salimi M. Mosca S. Gardner B. Palombo F. Matousek P. Stone N. Nanoparticle-mediated photothermal therapy limitation in clinical applications regarding pain management. Nanomaterials (Basel) 2022 12 6 922 10.3390/nano12060922 35335735
    [Google Scholar]
  39. Magadani R. Biosynthesis and characterization of gold nanoparticle using phytochemical and investigating their cytotoxic effect against cancerous and non- cancerous cell lines. Master thesis, University of Johannesburg, 2021.
    [Google Scholar]
  40. Ramalingam V. Raja S. Sundaramahalingam S. Rajaram R. Chemical fabrication of graphene oxide nanosheets attenuates biofilm formation of human clinical pathogens. Bioorg. Chem. 2019 83 326 335 10.1016/j.bioorg.2018.10.052 30396117
    [Google Scholar]
  41. Pan Y. Leifert A. Ruau D. Neuss S. Bornemann J. Schmid G. Brandau W. Simon U. Jahnen-Dechent W. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small 2009 5 18 2067 2076 10.1002/smll.200900466 19642089
    [Google Scholar]
  42. Bharadwaj K.K. Rabha B. Pati S. Sarkar T. Choudhury B.K. Barman A. Bhattacharjya D. Srivastava A. Baishya D. Edinur H.A. Abdul Kari Z. Mohd Noor N.H. Green synthesis of gold nanoparticles using plant extracts as beneficial prospect for cancer theranostics. Molecules 2021 26 21 6389 10.3390/molecules26216389 34770796
    [Google Scholar]
  43. Nurudeen Q.O. Ajiboye T.O. Aqueous root extract of Lecaniodiscus cupanioides restores the alterations in testicular parameters of sexually impaired male rats. Asian Pac. J. Reprod. 2012 1 2 120 124 10.1016/S2305‑0500(13)60062‑7
    [Google Scholar]
  44. Bishayee A. Ahmed S. Brankov N. Perloff M. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. Front. Biosci. 2011 16 1 980 996 10.2741/3730 21196213
    [Google Scholar]
  45. Dong J. Carpinone P.L. Pyrgiotakis G. Demokritou P. Moudgil B.M. Synthesis of precision gold nanoparticles using turkevich method. Kona. 2020 37 224 232 10.14356/kona.2020011
    [Google Scholar]
  46. Sanchis-Gual R. Coronado-Puchau M. Mallah T. Coronado E. Hybrid nanostructures based on gold nanoparticles and functional coordination polymers: Chemistry, physics and applications in biomedicine, catalysis and magnetism. Coord. Chem. Rev. 2023 480 215025 10.1016/j.ccr.2023.215025
    [Google Scholar]
  47. Kumar S. Gandhi K.S. Kumar R. Modeling of formation of gold nanoparticles by citrate method. Ind. Eng. Chem. Res. 2007 46 10 3128 3136 10.1021/ie060672j
    [Google Scholar]
  48. Stetefeld J. McKenna S.A. Patel T.R. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys. Rev. 2016 8 4 409 427 10.1007/s12551‑016‑0218‑6 28510011
    [Google Scholar]
  49. Iqbal M. Usanase G. Oulmi K. Aberkane F. Bendaikha T. Fessi H. Zine N. Agusti G. Errachid E.S. Elaissari A. Preparation of gold nanoparticles and determination of their particles size via different methods. Mater. Res. Bull. 2016 79 97 104 10.1016/j.materresbull.2015.12.026
    [Google Scholar]
  50. Li J. Li Q. Ma X. Tian B. Li T. Yu J. Dai S. Weng Y. Hua Y. Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties. Int. J. Nanomedicine 2016 11 5931 5944 10.2147/IJN.S119618 27877039
    [Google Scholar]
  51. Herizchi R. Abbasi E. Milani M. Akbarzadeh A. Current methods for synthesis of gold nanoparticles. Artif. Cells Nanomed. Biotechnol. 2016 44 2 596 602 10.3109/21691401.2014.971807 25365243
    [Google Scholar]
  52. de la Rica R. Aili D. Stevens M.M. Enzyme-responsive nanoparticles for drug release and diagnostics. Adv. Drug Deliv. Rev. 2012 64 11 967 978 10.1016/j.addr.2012.01.002 22266127
    [Google Scholar]
  53. Al Saqr A. Khafagy E.S. Alalaiwe A. Aldawsari M.F. Alshahrani S.M. Anwer M.K. Khan S. Lila A.S.A. Arab H.H. Hegazy W.A.H. Synthesis of gold nanoparticles by using green machinery: Characterization and in vitro toxicity. Nanomaterials (Basel) 2021 11 3 808 10.3390/nano11030808 33809859
    [Google Scholar]
  54. Shankar S.S. Rai A. Ahmad A. Sastry M. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 2004 275 2 496 502 10.1016/j.jcis.2004.03.003 15178278
    [Google Scholar]
  55. Ahn E.Y. Lee Y.J. Park J. Chun P. Park Y. Antioxidant potential of artemisia capillaris, portulaca oleracea, and prunella vulgaris extracts for biofabrication of gold nanoparticles and cytotoxicity assessment. Nanoscale Res. Lett. 2018 13 1 348 10.1186/s11671‑018‑2751‑7 30377868
    [Google Scholar]
  56. de Jong W.H. Borm P.J. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine 2008 3 2 133 149 10.2147/IJN.S596 18686775
    [Google Scholar]
  57. Chithrani B.D. Ghazani A.A. Chan W.C.W. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006 6 4 662 668 10.1021/nl052396o 16608261
    [Google Scholar]
  58. Danaei M. Dehghankhold M. Ataei S. Hasanzadeh Davarani F. Javanmard R. Dokhani A. Khorasani S. Mozafari M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018 10 2 57 10.3390/pharmaceutics10020057 29783687
    [Google Scholar]
  59. Abubakr M. Osman T.A. Kishawy H.A. Elharouni F. Hegab H. Esawi A.M.K. Preparation, characterization, and analysis of multi-walled carbon nanotube-based nanofluid: an aggregate based interpretation. RSC Advances 2021 11 41 25561 25574 10.1039/D1RA03780C 35478865
    [Google Scholar]
  60. Mukherjee S. Sushma V. Patra S. Barui A.K. Bhadra M.P. Sreedhar B. Patra C.R. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology 2012 23 45 455103 10.1088/0957‑4484/23/45/455103 23064012
    [Google Scholar]
  61. Hoshyar N. Gray S. Han H. Bao G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine (Lond.) 2016 11 6 673 692 10.2217/nnm.16.5 27003448
    [Google Scholar]
  62. Forest V. Cottier M. Pourchez J. Electrostatic interactions favor the binding of positive nanoparticles on cells: A reductive theory. Nano Today 2015 10 6 677 680 10.1016/j.nantod.2015.07.002
    [Google Scholar]
  63. Barai A.C. Paul K. Dey A. Manna S. Roy S. Bag B.G. Mukhopadhyay C. Green synthesis of Nerium oleander-conjugated gold nanoparticles and study of its in vitro anticancer activity on MCF-7 cell lines and catalytic activity. Nano Converg. 2018 5 1 10 10.1186/s40580‑018‑0142‑5 29682442
    [Google Scholar]
  64. Nath D. Banerjee P. Green nanotechnology – A new hope for medical biology. Environ. Toxicol. Pharmacol. 2013 36 3 997 1014 10.1016/j.etap.2013.09.002 24095717
    [Google Scholar]
  65. Vilchis-Nestor A. Sanchez-Mendieta V. Camacho M. Gomez-Espinosa R. Solvent less synthesis and optical properties of Au and Ag nanoparticles using Camelia sinensis extract. Mater. Lett. 2008 62 3103 3105 10.1016/j.matlet.2008.01.138
    [Google Scholar]
  66. Mohamad N.A.N. Arham N.A. Jai J. Hadi A. Plant extract as reducing agent in synthesis of metallic nanoparticles: A review. Adv. Mat. Res. 2013 832 350 355 10.4028/www.scientific.net/AMR.832.350
    [Google Scholar]
  67. Abdel-Raouf N. Al-Enazi N.M. Ibraheem I.B.M. Green biosynthesis of gold nanoparticles using Galaxaura elongata and characterization of their antibacterial activity. Arab. J. Chem. 2017 10 S3029 S3039 10.1016/j.arabjc.2013.11.044
    [Google Scholar]
  68. Sharma G. Nam J.S. Sharma A.R. Lee S.S. Antimicrobial potential of silver nanoparticles synthesized using medicinal herb Coptidis rhizome. Molecules 2018 23 9 2268 10.3390/molecules23092268 30189672
    [Google Scholar]
  69. Sivasubramanian K. Sabarinathan S. Muruganandham M. Velmurugan P. Arumugam N. Almansour A.I. Kumar R.S. Sivakumar S. Antioxidant, antibacterial, and cytotoxicity potential of synthesized silver nanoparticles from the Cassia alata leaf aqueous extract. Green Process. Synth. 2023 12 1 20230018 10.1515/gps‑2023‑0018
    [Google Scholar]
  70. Li W.Y. Chan S.W. Guo D.J. Yu P.H.F. Correlation between antioxidative power and anticancer activity in herbs from traditional chinese medicine formulae with anticancer therapeutic effect. Pharm. Biol. 2007 45 7 541 546 10.1080/13880200701498879
    [Google Scholar]
  71. Majoumouo M.S. Sharma J.R. Sibuyi N.R.S. Tincho M.B. Boyom F.F. Meyer M. Synthesis of biogenic gold nanoparticles from Terminalia mantaly extracts and the evaluation of their in vitro cytotoxic effects in cancer cells. Molecules 2020 25 19 4469 10.3390/molecules25194469 33003351
    [Google Scholar]
  72. Majoumouo M.S. Sibuyi N.R.S. Tincho M.B. Mbekou M. Boyom F.F. Meyer M. Enhanced anti-bacterial activity of biogenic silver nanoparticles synthesized from Terminalia mantaly extracts. Int. J. Nanomedicine 2019 14 9031 9046 10.2147/IJN.S223447 31819417
    [Google Scholar]
  73. Al-Sheddi E.S. Farshori N.N. Al-Oqail M.M. Al-Massarani S.M. Saquib Q. Wahab R. Musarrat J. Al-Khedhairy A.A. Siddiqui M.A. Anticancer potential of green synthesized silver nanoparticles using extract of nepeta deflersiana against human cervical cancer cells (HeLA). Bioinorg. Chem. Appl. 2018 2018 9390784 10.1155/2018/9390784
    [Google Scholar]
  74. Farah M.A. Ali M.A. Chen S.M. Li Y. Al-Hemaid F.M. Abou-Tarboush F.M. Al-Anazi K.M. Lee J. Silver nanoparticles synthesized from Adenium obesum leaf extract induced DNA damage, apoptosis and autophagy via generation of reactive oxygen species. Colloids Surf. B Biointerfaces 2016 141 158 169 10.1016/j.colsurfb.2016.01.027 26852099
    [Google Scholar]
  75. Ibrahim B. Akere T.H. Chakraborty S. Valsami-Jones E. Ali-Boucetta H. Functionalized gold nanoparticles suppress the proliferation of human lung alveolar adenocarcinoma cells by deubiquitinating enzymes inhibition. ACS Omega 2023 8 43 40622 40638 10.1021/acsomega.3c05452 37929120
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206325529241004064307
Loading
/content/journals/acamc/10.2174/0118715206325529241004064307
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test