Skip to content
2000
Volume 24, Issue 18
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Colorectal cancer is a common malignant tumor with high morbidity and mortality rates, imposing a huge burden on both patients and the healthcare system. Traditional treatments such as surgery, chemotherapy and radiotherapy have limitations, so finding more effective diagnostic and therapeutic tools is critical to improving the survival and quality of life of colorectal cancer patients. While current tumor targeting research mainly focuses on exploring the function and mechanism of molecular targets and screening for excellent drug targets, it is crucial to test the efficacy and mechanism of tumor cell therapy that targets these molecular targets. Selecting the appropriate drug carrier is a key step in effectively targeting tumor cells. In recent years, nanoparticles have gained significant interest as gene carriers in the field of colorectal cancer diagnosis and treatment due to their low toxicity and high protective properties. Nanoparticles, synthesized from natural or polymeric materials, are NM-sized particles that offer advantages such as low toxicity, slow release, and protection of target genes during delivery. By modifying nanoparticles, they can be targeted towards specific cells for efficient and safe targeting of tumor cells. Numerous studies have demonstrated the safety, efficiency, and specificity of nanoparticles in targeting tumor cells, making them a promising gene carrier for experimental and clinical studies. This paper aims to review the current application of nanoparticles in colorectal cancer diagnosis and treatment to provide insights for targeted therapy for colorectal cancer while also highlighting future prospects for nanoparticle development.

© 2024 The Author(s). Published by Bentham Science Publisher. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206323900240807110122
2024-11-01
2025-04-21
The full text of this item is not currently available.

References

  1. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer Statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.21654 33433946
    [Google Scholar]
  2. KeumN. GiovannucciE. Global burden of colorectal cancer: Emerging trends, risk factors and prevention strategies.Nat. Rev. Gastroenterol. Hepatol.2019161271373210.1038/s41575‑019‑0189‑8 31455888
    [Google Scholar]
  3. CarethersJ.M. DoubeniC.A. Causes of socioeconomic disparities in colorectal cancer and intervention framework and strategies.Gastroenterology2020158235436710.1053/j.gastro.2019.10.029 31682851
    [Google Scholar]
  4. VeettilS.K. WongT.Y. LooY.S. PlaydonM.C. LaiN.M. GiovannucciE.L. ChaiyakunaprukN. Role of diet in colorectal cancer incidence: Umbrella review of meta-analyses of prospective observational studies.JAMA Netw. Open202142e203734110.1001/jamanetworkopen.2020.37341 33591366
    [Google Scholar]
  5. HuY. LiangZ. SongB. HanH. PickhardtP.J. ZhuW. DuanC. ZhangH. BarishM.A. LascaridesC.E. Texture feature extraction and analysis for polyp differentiation via computed tomography colonography.IEEE Trans. Med. Imaging20163561522153110.1109/TMI.2016.2518958 26800530
    [Google Scholar]
  6. HaggagE. ElshamyA. RabehM. GabrN. SalemM. YoussifK. SamirA. Bin MuhsinahA. AlsayariA. AbdelmohsenU.R. Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea.Int. J. Nanomedicine2019146217622910.2147/IJN.S214171 31496682
    [Google Scholar]
  7. PitekA.S. HuH. ShuklaS. SteinmetzN.F. Cancer theranostic applications of albumin-coated tobacco mosaic virus nanoparticles.ACS Appl. Mater. Interfaces20181046394683947710.1021/acsami.8b12499 30403330
    [Google Scholar]
  8. JoudehN. LinkeD. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists.J. Nanobiotechnol.202220126210.1186/s12951‑022‑01477‑8 35672712
    [Google Scholar]
  9. SunL. LiuH. YeY. LeiY. IslamR. TanS. TongR. MiaoY.B. CaiL. Smart nanoparticles for cancer therapy.Signal Transduct. Target. Ther.20238141810.1038/s41392‑023‑01642‑x 37919282
    [Google Scholar]
  10. BiJ. MoC. LiS. HuangM. LinY. YuanP. LiuZ. JiaB. XuS. Immunotoxicity of metal and metal oxide nanoparticles: From toxic mechanisms to metabolism and outcomes.Biomater. Sci.202311124151418310.1039/D3BM00271C 37161951
    [Google Scholar]
  11. ZhangY. PetiboneD. XuY. MahmoodM. KarmakarA. CascianoD. AliS. BirisA.S. Toxicity and efficacy of carbon nanotubes and graphene: The utility of carbon-based nanoparticles in nanomedicine.Drug Metab. Rev.201446223224610.3109/03602532.2014.883406 24506522
    [Google Scholar]
  12. HamiduA. PittW.G. HusseiniG.A. Recent breakthroughs in using quantum dots for cancer imaging and drug delivery purposes.Nanomaterials (Basel)20231318256610.3390/nano13182566 37764594
    [Google Scholar]
  13. HamelmannN.M. PaulusseJ.M.J. Single-chain polymer nanoparticles in biomedical applications.J. Control. Release2023356264210.1016/j.jconrel.2023.02.019 36804328
    [Google Scholar]
  14. DeirramN. ZhangC. KermaniyanS.S. JohnstonA.P.R. SuchG.K. Ph-responsive polymer nanoparticles for drug delivery.Macromol. Rapid Commun.20194010180091710.1002/marc.201800917 30835923
    [Google Scholar]
  15. De LeoV. MaurelliA.M. GiottaL. CatucciL. Liposomes containing nanoparticles: Preparation and applications.Colloids Surf. B Biointerfaces202221811273710.1016/j.colsurfb.2022.112737 35933888
    [Google Scholar]
  16. YangR. ChenL. WangY. ZhangL. ZhengX. YangY. ZhuY. Tumor microenvironment responsive metal nanoparticles in cancer immunotherapy.Front. Immunol.202314123736110.3389/fimmu.2023.1237361 37575228
    [Google Scholar]
  17. HuangS.J. WangT.H. ChouY.H. WangH.M.D. HsuT.C. YowJ.L. TzangB.S. ChiangW.H. Hybrid PEGylated chitosan/PLGA nanoparticles designed as pH-responsive vehicles to promote intracellular drug delivery and cancer chemotherapy.Int. J. Biol. Macromol.202221056557810.1016/j.ijbiomac.2022.04.209 35513093
    [Google Scholar]
  18. Díez-PascualA.M. Carbon-based nanomaterials.Int. J. Mol. Sci.20212214772610.3390/ijms22147726 34299346
    [Google Scholar]
  19. PleskovaS. MikheevaE. GornostaevaE. Using of quantum dots in biology and medicine.Adv. Exp. Med. Biol.2018104832333410.1007/978‑3‑319‑72041‑8_19 29453547
    [Google Scholar]
  20. SoldadoA. BarrioL.C. Díaz-GonzalezM. de la Escosura-MuñizA. Costa-FernandezJ.M. Advances in quantum dots as diagnostic tools.Adv. Clin. Chem.202210714010.1016/bs.acc.2021.07.001 35337601
    [Google Scholar]
  21. XuQ. GaoJ. WangS. WangY. LiuD. WangJ. Quantum dots in cell imaging and their safety issues.J. Mater. Chem. B Mater. Biol. Med.20219295765577910.1039/D1TB00729G 34212167
    [Google Scholar]
  22. GuimarãesD. Cavaco-PauloA. NogueiraE. Design of liposomes as drug delivery system for therapeutic applications.Int. J. Pharm.202160112057110.1016/j.ijpharm.2021.120571 33812967
    [Google Scholar]
  23. AkkewarA. MahajanN. KharwadeR. GanganeP. Liposomes in the targeted gene therapy of cancer: A critical review.Curr. Drug Deliv.202320435037010.2174/1567201819666220421113127 35593362
    [Google Scholar]
  24. SilveiraM.J. MartinsC. CruzT. CastroF. Amorim-CostaÂ. ChesterK. OliveiraM.J. SarmentoB. scFv biofunctionalized nanoparticles to effective and safe targeting of CEA-expressing colorectal cancer cells.J. Nanobiotechnol.202321135710.1186/s12951‑023‑02126‑4 37784150
    [Google Scholar]
  25. QinW. ChandraJ. AbourehabM.A.S. GuptaN. ChenZ.S. KesharwaniP. CaoH.L. New opportunities for RGD-engineered metal nanoparticles in cancer.Mol. Cancer20232218710.1186/s12943‑023‑01784‑0 37226188
    [Google Scholar]
  26. WangJ. ZhangL. XinH. GuoY. ZhuB. SuL. WangS. ZengJ. ChenQ. DengR. WangZ. WangJ. JinX. GuiS. XuY. LuX. Mitochondria-targeting folic acid-modified nanoplatform based on mesoporous carbon and a bioactive peptide for improved colorectal cancer treatment.Acta Biomater.202215245347210.1016/j.actbio.2022.08.071 36084923
    [Google Scholar]
  27. AbbasiM. SohailM. MinhasM.U. MahmoodA. ShahS.A. MunirA. KashifM.U.R. Folic acid-decorated alginate nanoparticles loaded hydrogel for the oral delivery of diferourylmethane in colorectal cancer.Int. J. Biol. Macromol.202323312358510.1016/j.ijbiomac.2023.123585 36758757
    [Google Scholar]
  28. WeiY. GuX. SunY. MengF. StormG. ZhongZ. Transferrin-binding peptide functionalized polymersomes mediate targeted doxorubicin delivery to colorectal cancer in vivo.J. Control. Release202031940741510.1016/j.jconrel.2020.01.012 31923538
    [Google Scholar]
  29. LiuD. LiangS. MaK. MengQ.F. LiX. WeiJ. ZhouM. YunK. PanY. RaoL. ChenX. WangZ. Tumor microenvironment-responsive nanoparticles amplifying sting signaling pathway for cancer immunotherapy.Adv. Mater.2024366230484510.1002/adma.202304845 37723642
    [Google Scholar]
  30. AbedZ. Shakeri-ZadehA. EyvazzadehN. Magnetic targeting of magneto-plasmonic nanoparticles and their effects on temperature profile of nir laser irradiated to ct26 tumor in balb/c mice.J. Biomed. Phys. Eng.202111328128810.31661/jbpe.v0i0.1032 34189116
    [Google Scholar]
  31. ThébaultC.J. RamniceanuG. MichelA. BeauvineauC. GirardC. SeguinJ. MignetN. MénagerC. DoanB.T. In vivo evaluation of magnetic targeting in mice colon tumors with ultra-magnetic liposomes monitored by mri.Mol. Imaging Biol.201921226927810.1007/s11307‑018‑1238‑3 29942990
    [Google Scholar]
  32. YusefiM. Lee-KiunM.S. ShameliK. TeowS.Y. AliR.R. SiewK.K. ChanH.Y. WongM.M.T. LimW.L. KučaK. 5-Fluorouracil loaded magnetic cellulose bionanocomposites for potential colorectal cancer treatment.Carbohydr. Polym.202127311852310.1016/j.carbpol.2021.118523 34560940
    [Google Scholar]
  33. ZhengJ. LuC. DingY. ZhangJ. TanF. LiuJ. YangG. WangY. LiZ. YangM. YangY. GongW. GaoC. Red blood cell-hitchhiking mediated pulmonary delivery of ivermectin: Effects of nanoparticle properties.Int. J. Pharm.202261912171910.1016/j.ijpharm.2022.121719 35390488
    [Google Scholar]
  34. TamJ.M. TamJ.O. MurthyA. IngramD.R. MaL.L. TravisK. JohnstonK.P. SokolovK.V. Controlled assembly of biodegradable plasmonic nanoclusters for near-infrared imaging and therapeutic applications.ACS Nano2010442178218410.1021/nn9015746 20373747
    [Google Scholar]
  35. SanliS. Ghorbani-ZamaniF. MoulahoumH. GumusZ.P. CoskunolH. OdaciD.D. TimurS. Application of biofunctionalized magnetic nanoparticles based-sensing in abused drugs diagnostics.Anal. Chem.20209211033104010.1021/acs.analchem.9b04025 31800231
    [Google Scholar]
  36. WangB.Y. GuB.C. WangG.J. YangY.H. WuC.C. Detection of amyloid-β(1-42) aggregation with a nanostructured electrochemical sandwich immunoassay biosensor.Front. Bioeng. Biotechnol.20221085394710.3389/fbioe.2022.853947 35372290
    [Google Scholar]
  37. LaiM.H. LeeS. SmithC.E. KimK. KongH. Tailoring polymersome bilayer permeability improves enhanced permeability and retention effect for bioimaging.ACS Appl. Mater. Interfaces2014613108211082910.1021/am502822n 24915107
    [Google Scholar]
  38. ChenW. ZhangY. DiK. LiuC. XiaY. DingS. ShenH. LiZ. A washing-free and easy-to-operate fluorescent biosensor for highly efficient detection of breast cancer-derived exosomes.Front. Bioeng. Biotechnol.20221094585810.3389/fbioe.2022.945858 35837545
    [Google Scholar]
  39. RenR. SunH. MaC. LiuJ. WangH. Colon cancer cells secrete exosomes to promote self-proliferation by shortening mitosis duration and activation of STAT3 in a hypoxic environment.Cell Biosci.2019916210.1186/s13578‑019‑0325‑8 31402975
    [Google Scholar]
  40. WangM. PanY. WuS. SunZ. WangL. YangJ. YinY. LiG. Detection of colorectal cancer-derived exosomes based on covalent organic frameworks.Biosens. Bioelectron.202016911263810.1016/j.bios.2020.112638 32987328
    [Google Scholar]
  41. SunZ. LiJ. YangY. TongY. LiH. WangC. DuL. JiangY. Ratiometric fluorescent biosensor based on self-assembled fluorescent gold nanoparticles and duplex-specific nuclease-assisted signal amplification for sensitive detection of exosomal mirna.Bioconjug. Chem.20223391698170610.1021/acs.bioconjchem.2c00309 35960898
    [Google Scholar]
  42. DarN. ChenK.Y. NienY.T. PerkasN. GedankenA. ChenI.G. Sonochemically synthesized Ag nanoparticles as a SERS active substrate and effect of surfactant.Appl. Surf. Sci.201533121922410.1016/j.apsusc.2015.01.045
    [Google Scholar]
  43. LiangH. LiZ. WangW. WuY. XuH. Highly surface-roughened “flower-like” silver nanoparticles for extremely sensitive substrates of surface-enhanced raman scattering.Adv. Mater.200921454614461810.1002/adma.200901139
    [Google Scholar]
  44. AldosariF.M.M. Characterization of labeled gold nanoparticles for surface-enhanced raman scattering.Molecules202227389210.3390/molecules27030892 35164155
    [Google Scholar]
  45. ToiyamaY. TakahashiM. HurK. NagasakaT. TanakaK. InoueY. KusunokiM. BolandC.R. GoelA. Serum miR-21 as a diagnostic and prognostic biomarker in colorectal cancer.J. Natl. Cancer Inst.20131051284985910.1093/jnci/djt101 23704278
    [Google Scholar]
  46. CottonhamC.L. KanekoS. XuL. miR-21 and miR-31 converge on TIAM1 to regulate migration and invasion of colon carcinoma cells.J. Biol. Chem.201028546352933530210.1074/jbc.M110.160069 20826792
    [Google Scholar]
  47. ZhouJ. ZhangM. HuangY. FengL. ChenH. HuY. ChenH. ZhangK. ZhengL. ZhengS. MicroRNA-320b promotes colorectal cancer proliferation and invasion by competing with its homologous microRNA-320a.Cancer Lett.2015356266967510.1016/j.canlet.2014.10.014 25458952
    [Google Scholar]
  48. WuJ. LiS. MaY. ZhiW. ChenT. HuangX. HuangC. ZhouX. ZhangP. ZhangY. ZhengG. WangZ. ZhongX. CaiH. WangW. SunP. ZhouH. 3D hierarchic interfacial assembly of Au nanocage@Au along with IS-AgMNPs for simultaneous, ultrasensitive, reliable, and quantitative SERS detection of colorectal cancer related miRNAs.Biosens. Bioelectron.202424811599310.1016/j.bios.2023.115993 38183788
    [Google Scholar]
  49. Álvarez-ChaverP. Otero-EstévezO. Páez de la CadenaM. Rodríguez-BerrocalF.J. Martínez-ZorzanoV.S. Proteomics for discovery of candidate colorectal cancer biomarkers.World J. Gastroenterol.201420143804382410.3748/wjg.v20.i14.3804 24744574
    [Google Scholar]
  50. ZhangX. GanT. XuZ. ZhangH. WangD. ZhaoX. HuangY. LiuQ. FuB. DaiZ. LiP. XuW. Immune-like sandwich multiple hotspots SERS biosensor for ultrasensitive detection of NDKA biomarker in serum.Talanta202427112563010.1016/j.talanta.2024.125630 38237280
    [Google Scholar]
  51. GogoiP. KaurG. SinghN.K. Nanotechnology for colorectal cancer detection and treatment.World J. Gastroenterol.202228466497651110.3748/wjg.v28.i46.6497 36569271
    [Google Scholar]
  52. ShiX. GaoK. XiongS. GaoR. Multifunctional transferrin encapsulated gdf(3) nanoparticles for sentinel lymph node and tumor imaging.Bioconjug. Chem.202031112576258410.1021/acs.bioconjchem.0c00514 33155818
    [Google Scholar]
  53. ZhangY. ShiF. ChengJ. WangL. YapP.T. ShenD. Longitudinally guided super-resolution of neonatal brain magnetic resonance images.IEEE Trans. Cybern.201949266267410.1109/TCYB.2017.2786161 29994176
    [Google Scholar]
  54. IchikawaT. ErturkS.M. MotosugiU. SouH. IinoH. ArakiT. FujiiH. High-B-value diffusion-weighted MRI in colorectal cancer.AJR Am. J. Roentgenol.2006187118118410.2214/AJR.05.1005 16794174
    [Google Scholar]
  55. GarciaJ. HurwitzH.I. SandlerA.B. MilesD. ColemanR.L. DeurlooR. ChinotO.L. Bevacizumab (Avastin®) in cancer treatment: A review of 15 years of clinical experience and future outlook.Cancer Treat. Rev.20208610201710.1016/j.ctrv.2020.102017 32335505
    [Google Scholar]
  56. BhattacharyaR. FanF. WangR. YeX. XiaL. BoulbesD. EllisL.M. Intracrine VEGF signalling mediates colorectal cancer cell migration and invasion.Br. J. Cancer2017117684885510.1038/bjc.2017.238 28742793
    [Google Scholar]
  57. HsiehW.J. LiangC.J. ChiehJ.J. WangS.H. LaiI.R. ChenJ.H. ChangF.H. TsengW.K. YangS.Y. WuC.C. ChenY.L. In vivo tumor targeting and imaging with anti-vascular endothelial growth factor antibody-conjugated dextran-coated iron oxide nanoparticles.Int. J. Nanomedicine2012728332842 22745546
    [Google Scholar]
  58. HeX. LiuF. LiuL. DuanT. ZhangH. WangZ. Lectin-conjugated Fe2O3@Au core@Shell nanoparticles as dual mode contrast agents for in vivo detection of tumor.Mol. Pharm.201411373874510.1021/mp400456j 24472046
    [Google Scholar]
  59. LiD. YangJ. XuZ. LiY. SunY. WangY. ZouH. WangK. YangL. WuL. SunX. C-met-targeting (19)f mri nanoparticles with ultralong tumor retention for precisely detecting small or ill-defined colorectal liver metastases.Int. J. Nanomed.2023182181219610.2147/IJN.S403190 37131548
    [Google Scholar]
  60. ChoiS.H. TamuraK. KhajuriaR.K. BhereD. NesterenkoI. LawlerJ. ShahK. Antiangiogenic variant of TSP-1 targets tumor cells in glioblastomas.Mol. Ther.201523223524310.1038/mt.2014.214 25358253
    [Google Scholar]
  61. ChenL. XieJ. WuH. ZangF. MaM. HuaZ. GuN. ZhangY. Improving sensitivity of magnetic resonance imaging by using a dual-targeted magnetic iron oxide nanoprobe.Colloids Surf. B Biointerfaces201816133934610.1016/j.colsurfb.2017.10.059 29100127
    [Google Scholar]
  62. GadeM. KubikM. FiskerR.V. Thorlacius-UssingO. PetersenL.J. Diagnostic value of 18F-FDG PET/CT as first choice in the detection of recurrent colorectal cancer due to rising CEA.Cancer Imaging20151511110.1186/s40644‑015‑0048‑y 26263901
    [Google Scholar]
  63. ZhouJ. ZouS. KuangD. YanJ. ZhaoJ. ZhuX. A novel approach using fdg-pet/ct-based radiomics to assess tumor immune phenotypes in patients with non-small cell lung cancer.Front. Oncol.20211176927210.3389/fonc.2021.769272 34868999
    [Google Scholar]
  64. KongF.M.S. LiL. WangW. CampbellJ. WallerJ.L. PiertM. GrossM. ChengM. OwenD. StenmarkM. HuangK.C. FreyK.A. Ten HakenR.K. LawrenceT.S. Greater reduction in mid-treatment FDG-PET volume may be associated with worse survival in non-small cell lung cancer.Radiother. Oncol.201913224124910.1016/j.radonc.2018.10.006 30389239
    [Google Scholar]
  65. BicikI. BauerfeindP. BreitbachT. von SchulthessG.K. FriedM. Inflammatory bowel disease activity measured by positronemission tomography.Lancet1997350907326210.1016/S0140‑6736(05)62225‑8 9242806
    [Google Scholar]
  66. Gonzalez-MenendezP. HeviaD. Alonso-AriasR. Alvarez-ArtimeA. Rodriguez-GarciaA. KinetS. Gonzalez-PolaI. TaylorN. MayoJ.C. SainzR.M. GLUT1 protects prostate cancer cells from glucose deprivation-induced oxidative stress.Redox Biol.20181711212710.1016/j.redox.2018.03.017 29684818
    [Google Scholar]
  67. GarrigueP. TangJ. DingL. BouhlelA. TintaruA. LauriniE. HuangY. LyuZ. ZhangM. FernandezS. BalasseL. LanW. MasE. MarsonD. WengY. LiuX. GiorgioS. IovannaJ. PriclS. GuilletB. PengL. Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors.Proc. Natl. Acad. Sci. USA201811545114541145910.1073/pnas.1812938115 30348798
    [Google Scholar]
  68. JingB. QianR. JiangD. GaiY. LiuZ. GuoF. RenS. GaoY. LanX. AnR. Extracellular vesicles-based pre-targeting strategy enables multi-modal imaging of orthotopic colon cancer and image-guided surgery.J. Nanobiotechnology202119115110.1186/s12951‑021‑00888‑3 34022897
    [Google Scholar]
  69. WanH. DuH. WangF. DaiH. Molecular imaging in the second near-infrared window.Adv. Funct. Mater.20192925190056610.1002/adfm.201900566 31885529
    [Google Scholar]
  70. KurbegovicS. JuhlK. ChenH. QuC. DingB. LethJ.M. DrzewieckiK.T. KjaerA. ChengZ. Molecular targeted nir-ii probe for image-guided brain tumor surgery.Bioconjug. Chem.201829113833384010.1021/acs.bioconjchem.8b00669 30296054
    [Google Scholar]
  71. AntarisA.L. ChenH. DiaoS. MaZ. ZhangZ. ZhuS. WangJ. LozanoA.X. FanQ. ChewL. ZhuM. ChengK. HongX. DaiH. ChengZ. A high quantum yield molecule-protein complex fluorophore for near-infrared II imaging.Nat. Commun.2017811526910.1038/ncomms15269 28524850
    [Google Scholar]
  72. WanH. MaH. ZhuS. WangF. TianY. MaR. YangQ. HuZ. ZhuT. WangW. MaZ. ZhangM. ZhongY. SunH. LiangY. DaiH. Developing a bright nir-ii fluorophore with fast renal excretion and its application in molecular imaging of immune checkpoint pd-l1.Adv. Funct. Mater.20182850180495610.1002/adfm.201804956 31832053
    [Google Scholar]
  73. ZhangQ. ZhouH. ChenH. ZhangX. HeS. MaL. QuC. FangW. HanY. WangD. HuangY. SunY. FanQ. ChenY. ChengZ. Hierarchically nanostructured hybrid platform for tumor delineation and image-guided surgery via nir-ii fluorescence and pet bimodal imaging.Small20191545190338210.1002/smll.201903382 31550084
    [Google Scholar]
  74. PengY. ZhuL. WangL. LiuY. FangK. LanM. ShenD. LiuD. YuZ. GuoY. Preparation of nanobubbles modified with a small-molecule cxcr4 antagonist for targeted drug delivery to tumors and enhanced ultrasound molecular imaging.Int. J. Nanomedicine2019149139915710.2147/IJN.S210478 32063704
    [Google Scholar]
  75. ZhouJ.L. LinG.L. ZhaoD.C. ZhongG.X. QiuH.Z. Resection of multiple rectal carcinoids with transanal endoscopic microsurgery: Case report.World J. Gastroenterol.20152172220222410.3748/wjg.v21.i7.2220 25717261
    [Google Scholar]
  76. ChenM. LiangX. GaoC. ZhaoR. ZhangN. WangS. ChenW. ZhaoB. WangJ. DaiZ. Ultrasound triggered conversion of porphyrin/camptothecin-fluoroxyuridine triad microbubbles into nanoparticles overcomes multidrug resistance in colorectal cancer.ACS Nano20181277312732610.1021/acsnano.8b03674 29901986
    [Google Scholar]
  77. WangP. WangX. LuoQ. LiY. LinX. FanL. ZhangY. LiuJ. LiuX. Fabrication of red blood cell-based multimodal theranostic probes for second near-infrared window fluorescence imaging-guided tumor surgery and photodynamic therapy.Theranostics20199236938010.7150/thno.29817 30809280
    [Google Scholar]
  78. WangL. MaN. OkamotoS. AmaishiY. SatoE. SeoN. MinenoJ. TakesakoK. KatoT. ShikuH. Efficient tumor regression by adoptively transferred CEA-specific CAR-T cells associated with symptoms of mild cytokine release syndrome.OncoImmunology201659e121121810.1080/2162402X.2016.1211218 27757303
    [Google Scholar]
  79. LiX. XieG. ZhaiJ. HeY. WangT. WangY. ShenL. Association of serum Interleukin-8 level with lymph node metastasis and tumor recurrence in gastric cancer.Front. Oncol.20221297526910.3389/fonc.2022.975269 36185222
    [Google Scholar]
  80. Kolitz-DombM. GrinbergI. Corem-SalkmonE. MargelS. Engineering of near infrared fluorescent proteinoid-poly(L-lactic acid) particles for in vivo colon cancer detection.J. Nanobiotechnology20141213010.1186/s12951‑014‑0030‑z 25113279
    [Google Scholar]
  81. MohajershojaiT. JhaP. BoströmA. FrejdF.Y. YazakiP.J. NestorM. In vitro characterization of (177)lu-dota-m5a anti-carcinoembryonic antigen humanized antibody and hsp90 inhibition for potentiated radioimmunotherapy of colorectal cancer.Front. Oncol.20221284933810.3389/fonc.2022.849338 35433442
    [Google Scholar]
  82. LockerG.Y. HamiltonS. HarrisJ. JessupJ.M. KemenyN. MacdonaldJ.S. SomerfieldM.R. HayesD.F. BastR.C. Jr ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer.J. Clin. Oncol.200624335313532710.1200/JCO.2006.08.2644 17060676
    [Google Scholar]
  83. ZińczukJ. MaciejczykM. ZarębaK. RomaniukW. MarkowskiA. KędraB. ZalewskaA. PryczyniczA. Matowicka-KarnaJ. Guzińska-UstymowiczK. Antioxidant barrier, redox status, and oxidative damage to biomolecules in patients with colorectal cancer. Can malondialdehyde and catalase be markers of colorectal cancer advancement?Biomolecules201991063710.3390/biom9100637 31652642
    [Google Scholar]
  84. DuffyM.J. Carcinoembryonic antigen as a marker for colorectal cancer: Is it clinically useful?Clin. Chem.200147462463010.1093/clinchem/47.4.624 11274010
    [Google Scholar]
  85. TiernanJ.P. IngramN. MarstonG. PerryS.L. RushworthJ.V. ColettaP.L. MillnerP.A. JayneD.G. HughesT.A. CEA-targeted nanoparticles allow specific in vivo fluorescent imaging of colorectal cancer models.Nanomedicine (Lond.)20151081223123110.2217/nnm.14.202 25694062
    [Google Scholar]
  86. ShahidS. ChaudhryM.N. MahmoodN. Mutations of the human interferon alpha-2b (hIFNα-2b) gene in cancer patients receiving radiotherapy.Am. J. Cancer Res.20155824552466 26396921
    [Google Scholar]
  87. ModingE.J. KastanM.B. KirschD.G. Strategies for optimizing the response of cancer and normal tissues to radiation.Nat. Rev. Drug Discov.201312752654210.1038/nrd4003 23812271
    [Google Scholar]
  88. TsaiT.L. LaiY.H. ChenH.H.W. SuW.C. Overcoming radiation resistance by iron-platinum metal alloy nanoparticles in human copper transport 1-overexpressing cancer cells via mitochondrial disturbance.Int. J. Nanomedicine2021162071208510.2147/IJN.S283147 33727814
    [Google Scholar]
  89. ZhaoL. QiuG. WangK. ChenH. RuanF. LiuN. DengZ. YaoY. GuoD. WangD. ShaL. KongX. LiuW. ZhangY. A nano-integrated diagnostic and therapeutic platform with oxidation–reduction reactions in tumor microenvironments.Nanoscale Adv.2020252192220210.1039/C9NA00786E 36132527
    [Google Scholar]
  90. SchaueD. McBrideW.H. Opportunities and challenges of radiotherapy for treating cancer.Nat. Rev. Clin. Oncol.201512952754010.1038/nrclinonc.2015.120 26122185
    [Google Scholar]
  91. ZhangP. DarmonA. MarillJ. Mohamed AnesaryN. ParisS. Radiotherapy-activated hafnium oxide nanoparticles produce abscopal effect in a mouse colorectal cancer model.Int. J. Nanomedicine2020153843385010.2147/IJN.S250490 32581534
    [Google Scholar]
  92. Alamilla-PresuelJ.C. Burgos-MolinaA.M. González-VidalA. Sendra-PorteroF. Ruiz-GómezM.J. Factors and molecular mechanisms of radiation resistance in cancer cells.Int. J. Radiat. Biol.20229881301131510.1080/09553002.2022.2047825 35225732
    [Google Scholar]
  93. LeeK.J. KoE.J. ParkY.Y. ParkS.S. JuE.J. ParkJ. ShinS.H. SuhY.A. HongS.M. ParkI.J. KimK. HwangJ.J. JangS.J. LeeJ.S. SongS.Y. JeongS.Y. ChoiE.K. A novel nanoparticle-based theranostic agent targeting LRP-1 enhances the efficacy of neoadjuvant radiotherapy in colorectal cancer.Biomaterials202025512015110.1016/j.biomaterials.2020.120151 32505033
    [Google Scholar]
  94. HouL. ZhongT. ChengP. LongB. ShiL. MengX. YaoH. Self-assembled peptide-paclitaxel nanoparticles for enhancing therapeutic efficacy in colorectal cancer.Front. Bioeng. Biotechnol.20221093866210.3389/fbioe.2022.938662 36246349
    [Google Scholar]
  95. KyulaJ.N. Van SchaeybroeckS. DohertyJ. FenningC.S. LongleyD.B. JohnstonP.G. Chemotherapy-induced activation of ADAM-17: A novel mechanism of drug resistance in colorectal cancer.Clin. Cancer Res.201016133378338910.1158/1078‑0432.CCR‑10‑0014 20570921
    [Google Scholar]
  96. XiongQ. BaiY. ShiR. WangJ. XuW. ZhangM. SongT. Preferentially released miR-122 from cyclodextrin-based star copolymer nanoparticle enhances hepatoma chemotherapy by apoptosis induction and cytotoxics efflux inhibition.Bioact. Mater.20216113744375510.1016/j.bioactmat.2021.03.026 33898875
    [Google Scholar]
  97. WangJ. WangF. LiF. ZhangW. ShenY. ZhouD. GuoS. A multifunctional poly(curcumin) nanomedicine for dual-modal targeted delivery, intracellular responsive release, dual-drug treatment and imaging of multidrug resistant cancer cells.J. Mater. Chem. B Mater. Biol. Med.20164172954296210.1039/C5TB02450A 27152196
    [Google Scholar]
  98. ZhaS. UenoM. LiangY. OkadaS. OdaT. IshibashiF. Induction of apoptotic cell death in human leukemia u937 cells by c18 hydroxy unsaturated fatty acid isolated from red alga tricleocarpa jejuensis.Mar. Drugs202119313810.3390/md19030138 33801204
    [Google Scholar]
  99. HeY. JuY. HuY. WangB. CheS. JianY. ZhuoW. FuX. ChengY. ZhengS. HuangN. QianZ. LiuJ. ZhouP. GaoX. Brd4 proteolysis-targeting chimera nanoparticles sensitized colorectal cancer chemotherapy.J. Control. Release202335415516610.1016/j.jconrel.2022.12.035 36538950
    [Google Scholar]
  100. JinX. YanY. WangD. DingD. MaT. YeZ. JimenezR. WangL. WuH. HuangH. Dub3 promotes bet inhibitor resistance and cancer progression by deubiquitinating brd4.Mol. Cell2018714592605.e410.1016/j.molcel.2018.06.036 30057199
    [Google Scholar]
  101. WangR. CaoX.J. KulejK. LiuW. MaT. MacDonaldM. ChiangC.M. GarciaB.A. YouJ. Uncovering BRD4 hyperphosphorylation associated with cellular transformation in NUT midline carcinoma.Proc. Natl. Acad. Sci. USA201711427E5352E536110.1073/pnas.1703071114 28630312
    [Google Scholar]
  102. BaoY. WuX. ChenJ. HuX. ZengF. ChengJ. JinH. LinX. ChenL.F. Brd4 modulates the innate immune response through Mnk2–eIF4E pathway-dependent translational control of IκBα.Proc. Natl. Acad. Sci. USA201711420E3993E400110.1073/pnas.1700109114 28461486
    [Google Scholar]
  103. HuangZ. YangR. ZhangL. ZhuM. ZhangC. WenJ. LiH. BRD4 inhibition alleviates mechanical stress-induced TMJ OA-like pathological changes and attenuates TREM1-mediated inflammatory response.Clin. Epigenetics20211311010.1186/s13148‑021‑01008‑6 33446277
    [Google Scholar]
  104. TakagawaY. GenY. MuramatsuT. TanimotoK. InoueJ. HaradaH. InazawaJ. Mir-1293, a candidate for mirna-based cancer therapeutics, simultaneously targets brd4 and the DNA repair pathway.Mol. Ther.20202861494150510.1016/j.ymthe.2020.04.001 32320642
    [Google Scholar]
  105. TanY.F. WangM. ChenZ.Y. WangL. LiuX.H. Inhibition of BRD4 prevents proliferation and epithelial–mesenchymal transition in renal cell carcinoma via NLRP3 inflammasome-induced pyroptosis.Cell Death Dis.202011423910.1038/s41419‑020‑2431‑2 32303673
    [Google Scholar]
  106. LangT. ZhuR. ZhuX. YanW. LiY. ZhaiY. WuT. HuangX. YinQ. LiY. Combining gut microbiota modulation and chemotherapy by capecitabine-loaded prebiotic nanoparticle improves colorectal cancer therapy.Nat. Commun.2023141474610.1038/s41467‑023‑40439‑y 37550297
    [Google Scholar]
  107. DewhirstM.W. SecombT.W. Transport of drugs from blood vessels to tumour tissue.Nat. Rev. Cancer2017171273875010.1038/nrc.2017.93 29123246
    [Google Scholar]
  108. YanJ. GuanZ.Y. ZhuW.F. ZhongL.Y. QiuZ.Q. YueP.F. WuW.T. LiuJ. HuangX. Preparation of puerarin chitosan oral nanoparticles by ionic gelation method and its related kinetics.Pharmaceutics202012321610.3390/pharmaceutics12030216 32131425
    [Google Scholar]
  109. ZhaoX. PanJ. LiW. YangW. QinL. PanY. Gold nanoparticles enhance cisplatin delivery and potentiate chemotherapy by decompressing colorectal cancer vessels.Int. J. Nanomed.2018136207622110.2147/IJN.S176928 30349245
    [Google Scholar]
  110. HaoT. FuY. YangY. YangS. LiuJ. TangJ. RidwanK.A. TengY. LiuZ. LiJ. GuoN. YuP. Tumor vasculature-targeting PEGylated peptide-drug conjugate prodrug nanoparticles improve chemotherapy and prevent tumor metastasis.Eur. J. Med. Chem.202121911343010.1016/j.ejmech.2021.113430 33865152
    [Google Scholar]
  111. EgorovaA.A. ShtykalovaS.V. MaretinaM.A. SokolovD.I. SelkovS.A. BaranovV.S. KiselevA.V. Synergistic anti-angiogenic effects using peptide-based combinatorial delivery of sirnas targeting vegfa, vegfr1, and endoglin genes.Pharmaceutics201911626110.3390/pharmaceutics11060261 31174285
    [Google Scholar]
  112. LammersT. KiesslingF. HenninkW.E. StormG. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress.J. Control. Release2012161217518710.1016/j.jconrel.2011.09.063 21945285
    [Google Scholar]
  113. LiuL. LiuL. LiY. HuangX. GuD. WeiB. SuD. JinG. Ultrasmall superparamagnetic nanoparticles targeting E-selectin: Synthesis and effects in mice in vitro and in vivo.Int. J. Nanomed.2019144517452810.2147/IJN.S199571 31354271
    [Google Scholar]
  114. JubeliE. MoineL. Vergnaud-GauduchonJ. BarrattG. E-selectin as a target for drug delivery and molecular imaging.J. Control. Release2012158219420610.1016/j.jconrel.2011.09.084 21983284
    [Google Scholar]
  115. DeschepperF.M. ZoppiR. PirroM. HensbergenP.J. Dall’OlioF. KotsiasM. GardnerR.A. SpencerD.I.R. VideiraP.A. L1cam as an e-selectin ligand in colon cancer.Int. J. Mol. Sci.20202121828610.3390/ijms21218286 33167483
    [Google Scholar]
  116. LiJ.M. YuR. ZhangL.P. WenS.Y. WangS.J. ZhangX.Y. XuQ. KongL.D. Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation: A benefit of short-chain fatty acids.Microbiome2019719810.1186/s40168‑019‑0713‑7 31255176
    [Google Scholar]
  117. LamprinakiD. Garcia-VelloP. MarchettiR. HellmichC. McCordK.A. BowlesK.M. MacauleyM.S. SilipoA. De CastroC. CrockerP.R. JugeN. Siglec-7 mediates immunomodulation by colorectal cancer-associated fusobacterium nucleatum ssp. Animalis.Front. Immunol.20211274418410.3389/fimmu.2021.744184 34659241
    [Google Scholar]
  118. YinH. MiaoZ. WangL. SuB. LiuC. JinY. WuB. HanH. YuanX. Fusobacterium nucleatum promotes liver metastasis in colorectal cancer by regulating the hepatic immune niche and altering gut microbiota.Aging (Albany NY)20221441941195810.18632/aging.203914 35212644
    [Google Scholar]
  119. LiuH. DuJ. ChaoS. LiS. CaiH. ZhangH. ChenG. LiuP. BuP. Fusobacterium nucleatum promotes colorectal cancer cell to acquire stem cell-like features by manipulating lipid droplet-mediated numb degradation.Adv. Sci. (Weinh.)2022912210522210.1002/advs.202105222 35170250
    [Google Scholar]
  120. RubinsteinM.R. BaikJ.E. LaganaS.M. HanR.P. RaabW.J. SahooD. DalerbaP. WangT.C. HanY.W. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β‐catenin modulator Annexin A1.EMBO Rep.2019204e4763810.15252/embr.201847638 30833345
    [Google Scholar]
  121. SernaG. Ruiz-PaceF. HernandoJ. AlonsoL. FasaniR. LandolfiS. ComasR. JimenezJ. ElezE. BullmanS. TaberneroJ. CapdevilaJ. DienstmannR. NuciforoP. Fusobacterium nucleatum persistence and risk of recurrence after preoperative treatment in locally advanced rectal cancer.Ann. Oncol.202031101366137510.1016/j.annonc.2020.06.003 32569727
    [Google Scholar]
  122. ZhengD.W. DongX. PanP. ChenK.W. FanJ.X. ChengS.X. ZhangX.Z. Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy.Nat. Biomed. Eng.20193971772810.1038/s41551‑019‑0423‑2 31332342
    [Google Scholar]
  123. GuB. WangB. LiX. FengZ. MaC. GaoL. YuY. ZhangJ. ZhengP. WangY. LiH. ZhangT. ChenH. Photodynamic therapy improves the clinical efficacy of advanced colorectal cancer and recruits immune cells into the tumor immune microenvironment.Front. Immunol.202213105042110.3389/fimmu.2022.1050421 36466825
    [Google Scholar]
  124. LiJ. WangS. FontanaF. TapeinosC. ShahbaziM.A. HanH. SantosH.A. Nanoparticles-based phototherapy systems for cancer treatment: Current status and clinical potential.Bioact. Mater.20232347150710.1016/j.bioactmat.2022.11.013 36514388
    [Google Scholar]
  125. McCabe-LankfordE.E. BrownT.L. Levi-PolyachenkoN.H. Assessing fluorescence detection and effective photothermal therapy of near‐infrared polymer nanoparticles using alginate tissue phantoms.Lasers Surg. Med.201850101040104910.1002/lsm.22955 29953621
    [Google Scholar]
  126. SrinivasanS. PogueB.W. JiangS. DehghaniH. KogelC. SohoS. GibsonJ.J. TostesonT.D. PoplackS.P. PaulsenK.D. Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography.Proc. Natl. Acad. Sci. USA200310021123491235410.1073/pnas.2032822100 14514888
    [Google Scholar]
  127. YueX. ZhangQ. DaiZ. Near-infrared light-activatable polymeric nanoformulations for combined therapy and imaging of cancer.Adv. Drug Deliv. Rev.201711515517010.1016/j.addr.2017.04.007 28455188
    [Google Scholar]
  128. O’NealD.P. HirschL.R. HalasN.J. PayneJ.D. WestJ.L. Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles.Cancer Lett.2004209217117610.1016/j.canlet.2004.02.004 15159019
    [Google Scholar]
  129. BurkeA. DingX. SinghR. KraftR.A. Levi-PolyachenkoN. RylanderM.N. SzotC. BuchananC. WhitneyJ. FisherJ. HatcherH.C. D’AgostinoR.Jr KockN.D. AjayanP.M. CarrollD.L. AkmanS. TortiF.M. TortiS.V. Long-term survival following a single treatment of kidney tumors with multiwalled carbon nanotubes and near-infrared radiation.Proc. Natl. Acad. Sci. USA200910631128971290210.1073/pnas.0905195106 19620717
    [Google Scholar]
  130. Graham-GuryshE. KelkarS. McCabe-LankfordE. KuthirummalN. BrownT. KockN.D. MohsA.M. Levi-PolyachenkoN. Hybrid donor-acceptor polymer particles with amplified energy transfer for detection and on-demand treatment of breast cancer.ACS Appl. Mater. Interfaces20181097697770310.1021/acsami.7b19503 29457709
    [Google Scholar]
  131. XingY. LiL. AiX. FuL. Polyaniline-coated upconversion nanoparticles with upconverting luminescent and photothermal conversion properties for photothermal cancer therapy.Int. J. Nanomedicine2016114327433810.2147/IJN.S97441 27621625
    [Google Scholar]
  132. HaoM. KongC. JiangC. HouR. ZhaoX. LiJ. WangY. GaoY. ZhangH. YangB. JiangJ. Polydopamine-coated Au-Ag nanoparticle-guided photothermal colorectal cancer therapy through multiple cell death pathways.Acta Biomater.20198341442410.1016/j.actbio.2018.10.032 30366131
    [Google Scholar]
  133. McCarthyB. CudykierA. SinghR. Levi-PolyachenkoN. SokerS. Semiconducting polymer nanoparticles for photothermal ablation of colorectal cancer organoids.Sci. Rep.2021111153210.1038/s41598‑021‑81122‑w 33452397
    [Google Scholar]
  134. KhaledY.S. KhotM.I. Aiyappa-MaudsleyR. MaiseyT. PramanikA. TiernanJ. LinternN. Al-EneziE. ShamsuddinS.H. TomlinsonD. ColettaL. MillnerP.A. HughesT.A. JayneD.G. Photoactive imaging and therapy for colorectal cancer using a CEA-Affimer conjugated Foslip nanoparticle.Nanoscale202416147185719910.1039/D3NR04118B 38506227
    [Google Scholar]
  135. WangY. LiP. ChenL. GaoW. ZengF. KongL.X. Targeted delivery of 5-fluorouracil to HT-29 cells using high efficient folic acid-conjugated nanoparticles.Drug Deliv.201522219119810.3109/10717544.2013.875603 24437926
    [Google Scholar]
  136. NandiR. MishraS. MajiT.K. MannaK. KarP. BanerjeeS. DuttaS. SharmaS.K. LemmensP. SahaK.D. PalS.K. A novel nanohybrid for cancer theranostics: folate sensitized Fe 2 O 3 nanoparticles for colorectal cancer diagnosis and photodynamic therapy.J. Mater. Chem. B Mater. Biol. Med.20175213927393910.1039/C6TB03292C 32264254
    [Google Scholar]
  137. SoumoyL. GhanemG.E. SaussezS. JourneF. Bufalin for an innovative therapeutic approach against cancer.Pharmacol. Res.202218410644210.1016/j.phrs.2022.106442 36096424
    [Google Scholar]
  138. DolmansD.E.J.G.J. FukumuraD. JainR.K. Photodynamic therapy for cancer.Nat. Rev. Cancer20033538038710.1038/nrc1071 12724736
    [Google Scholar]
  139. SharmanW.M. AllenC.M. van LierJ.E. Photodynamic therapeutics: basic principles and clinical applications.Drug Discov. Today199941150751710.1016/S1359‑6446(99)01412‑9 10529768
    [Google Scholar]
  140. YuanZ. LiuC. SunY. LiY. WuH. MaS. ShangJ. ZhanY. YinP. GaoF. Bufalin exacerbates Photodynamic therapy of colorectal cancer by targeting SRC-3/HIF-1α pathway.Int. J. Pharm.202262412201810.1016/j.ijpharm.2022.122018 35839982
    [Google Scholar]
  141. KangS. LeeS. ParkS. Irgd peptide as a tumor-penetrating enhancer for tumor-targeted drug delivery.Polymers (Basel)2020129190610.3390/polym12091906 32847045
    [Google Scholar]
  142. ZuoH. Irgd: A promising peptide for cancer imaging and a potential therapeutic agent for various cancers.J. Oncol.2019201911510.1155/2019/9367845 31346334
    [Google Scholar]
  143. OstroverkhovP.V. SemkinaA.S. NaumenkoV.A. PlotnikovaE.A. MelnikovP.A. AbakumovaT.O. YakubovskayaR.I. MironovA.F. VodopyanovS.S. AbakumovA.M. MajougaA.G. GrinM.A. ChekhoninV.P. AbakumovM.A. Synthesis and characterization of bacteriochlorin loaded magnetic nanoparticles (MNP) for personalized MRI guided photosensitizers delivery to tumor.J. Colloid Interface Sci.201953713214110.1016/j.jcis.2018.10.087 30439612
    [Google Scholar]
  144. HuangT. ZhaoM. YuQ. FengZ. XieM. LiuS. ZhangK.Y. ZhaoQ. HuangW. De novo design of polymeric carrier to photothermally release singlet oxygen for hypoxic tumor treatment.Research201920192019/926908110.34133/2019/9269081 31549095
    [Google Scholar]
  145. YangZ.L. TianW. WangQ. ZhaoY. ZhangY.L. TianY. TangY.X. WangS.J. LiuY. NiQ.Q. LuG.M. TengZ.G. ZhangL.J. Oxygen-evolving mesoporous organosilica coated prussian blue nanoplatform for highly efficient photodynamic therapy of tumors.Adv. Sci. (Weinh.)201855170084710.1002/advs.201700847 29876209
    [Google Scholar]
  146. Nascimento-FilhoC.H.V. WebberL.P. BorgatoG.B. Goloni-BertolloE.M. SquarizeC.H. CastilhoR.M. Hypoxic niches are endowed with a protumorigenic mechanism that supersedes the protective function of PTEN.FASEB J.20193312134351344910.1096/fj.201900722R 31560860
    [Google Scholar]
  147. DongY. ZhouL. ShenZ. MaQ. ZhaoY. SunY. CaoJ. Iodinated cyanine dye-based nanosystem for synergistic phototherapy and hypoxia-activated bioreductive therapy.Drug Deliv.202229123825310.1080/10717544.2021.2023701 35001784
    [Google Scholar]
  148. SunJ. DuK. DiaoJ. CaiX. FengF. WangS. Gsh and H2O2 co-activatable mitochondria-targeted photodynamic therapy under normoxia and hypoxia.Angew. Chem. Int. Ed.20205929121221212810.1002/anie.202003895 32297412
    [Google Scholar]
  149. ZhangL. YangX.Q. WeiJ.S. LiX. WangH. ZhaoY.D. Intelligent gold nanostars for in vivo CT imaging and catalase-enhanced synergistic photodynamic & photothermal tumor therapy.Theranostics20199195424544210.7150/thno.33015 31534494
    [Google Scholar]
  150. SunT. ZhangY. ZhangC. WangH. PanH. LiuJ. LiZ. ChenL. ChangJ. ZhangW. Cyanobacteria-based bio-oxygen pump promoting hypoxia-resistant photodynamic therapy.Front. Bioeng. Biotechnol.2020823710.3389/fbioe.2020.00237 32266251
    [Google Scholar]
  151. LiangX. ChenM. BhattaraiP. HameedS. DaiZ. Perfluorocarbon@porphyrin nanoparticles for tumor hypoxia relief to enhance photodynamic therapy against liver metastasis of colon cancer.ACS Nano20201410135691358310.1021/acsnano.0c05617 32915537
    [Google Scholar]
  152. ZhuD. ZhangJ. LuoG. DuoY. TangB.Z. Bright bacterium for hypoxia-tolerant photodynamic therapy against orthotopic colon tumors by an interventional method.Adv. Sci. (Weinh.)2021815200476910.1002/advs.202004769 34145986
    [Google Scholar]
  153. YangC.C. TsaiM.H. LiK.Y. HouC.H. LinF.H. Carbon-doped TiO2 activated by x-ray irradiation for the generation of reactive oxygen species to enhance photodynamic therapy in tumor treatment.Int. J. Mol. Sci.2019209207210.3390/ijms20092072 31035468
    [Google Scholar]
  154. ChenH. WangG.D. ChuangY.J. ZhenZ. ChenX. BiddingerP. HaoZ. LiuF. ShenB. PanZ. XieJ. Nanoscintillator-mediated X-ray inducible photodynamic therapy for in vivo cancer treatment.Nano Lett.20151542249225610.1021/nl504044p 25756781
    [Google Scholar]
  155. ChenH. SunX. WangG.D. NagataK. HaoZ. WangA. LiZ. XieJ. ShenB. LiGa5O8:Cr-based theranostic nanoparticles for imaging-guided X-ray induced photodynamic therapy of deep-seated tumors.Mater. Horiz.2017461092110110.1039/C7MH00442G 31528350
    [Google Scholar]
  156. GongL. ZhangY. ZhaoJ. ZhangY. TuK. JiaoL. XuQ. ZhangM. HanS. All-in-one biomimetic nanoplatform based on hollow polydopamine nanoparticles for synergistically enhanced radiotherapy of colon cancer.Small20221814210765610.1002/smll.202107656 35150039
    [Google Scholar]
  157. LinA. GorbanevY. De BackerJ. Van LoenhoutJ. Van BoxemW. LemièreF. CosP. DewildeS. SmitsE. BogaertsA. Non-thermal plasma as a unique delivery system of short-lived reactive oxygen and nitrogen species for immunogenic cell death in melanoma cells.Adv. Sci. (Weinh.)201966180206210.1002/advs.201802062 30937272
    [Google Scholar]
  158. ZhaoH. ChenY. ShenP. GongL. Identification of immune cell infiltration landscape and their prognostic significance in uveal melanoma.Front. Cell Dev. Biol.2021971356910.3389/fcell.2021.713569 34513843
    [Google Scholar]
  159. SharmaA. HoushyarR. BhosaleP. ChoiJ.I. GulatiR. LallC. Chemotherapy induced liver abnormalities: An imaging perspective.Clin. Mol. Hepatol.201420331732610.3350/cmh.2014.20.3.317 25320738
    [Google Scholar]
  160. BeyrendG. van der GrachtE. YilmazA. van DuikerenS. CampsM. HölltT. VilanovaA. van UnenV. KoningF. de MirandaN.F.C.C. ArensR. OssendorpF. PD-L1 blockade engages tumor-infiltrating lymphocytes to co-express targetable activating and inhibitory receptors.J. Immunother. Cancer20197121710.1186/s40425‑019‑0700‑3 31412943
    [Google Scholar]
  161. PardollD.M. The blockade of immune checkpoints in cancer immunotherapy.Nat. Rev. Cancer201212425226410.1038/nrc3239 22437870
    [Google Scholar]
  162. WangL. ZhangT. ZhengY. LiY. TangX. ChenQ. MaoW. LiW. LiuX. ZhuJ. Combination of irinotecan silicasome nanoparticles with radiation therapy sensitizes immunotherapy by modulating the activation of the cGAS/STING pathway for colorectal cancer.Mater. Today Bio20232310080910.1016/j.mtbio.2023.100809 37779919
    [Google Scholar]
  163. HuY. ChenD. HongM. LiuJ. LiY. HaoJ. LuL. YinZ. WuY. Apoptosis, pyroptosis, and ferroptosis conspiringly induce immunosuppressive hepatocellular carcinoma microenvironment and γδ t-cell imbalance.Front. Immunol.20221384597410.3389/fimmu.2022.845974 35444645
    [Google Scholar]
  164. Salas-BenitoD. Pérez-GraciaJ.L. Ponz-SarviséM. Rodriguez-RuizM.E. Martínez-ForeroI. CastañónE. López-PicazoJ.M. SanmamedM.F. MeleroI. Paradigms on immunotherapy combinations with chemotherapy.Cancer Discov.20211161353136710.1158/2159‑8290.CD‑20‑1312 33712487
    [Google Scholar]
  165. HuangF.Y. LeiJ. SunY. YanF. ChenB. ZhangL. LuZ. CaoR. LinY.Y. WangC.C. TanG.H. Induction of enhanced immunogenic cell death through ultrasound-controlled release of doxorubicin by liposome-microbubble complexes.OncoImmunology201877e144672010.1080/2162402X.2018.1446720 29900064
    [Google Scholar]
  166. Van HoeckeL. RaesL. StremerschS. BransT. FraireJ.C. RoelandtR. DeclercqW. VandenabeeleP. RaemdonckK. BraeckmansK. SaelensX. Delivery of mixed-lineage kinase domain-like protein by vapor nanobubble photoporation induces necroptotic-like cell death in tumor cells.Int. J. Mol. Sci.20192017425410.3390/ijms20174254 31480289
    [Google Scholar]
  167. LiJ. LuoG. ZhangC. LongS. GuoL. YangG. WangF. ZhangL. ShiL. FuY. ZhangY. In situ injectable hydrogel-loaded drugs induce anti-tumor immune responses in melanoma immunochemotherapy.Mater. Today Bio20221410023810.1016/j.mtbio.2022.100238 35330634
    [Google Scholar]
  168. LiQ. SuR. BaoX. CaoK. DuY. WangN. WangJ. XingF. YanF. HuangK. FengS. Glycyrrhetinic acid nanoparticles combined with ferrotherapy for improved cancer immunotherapy.Acta Biomater.202214410912010.1016/j.actbio.2022.03.030 35314366
    [Google Scholar]
  169. ZhangH. LanM. CuiG. ZhuW. The influence of caerulomycin a on the intestinal microbiota in sd rats.Mar. Drugs202018527710.3390/md18050277 32456087
    [Google Scholar]
  170. SaffarianA. MuletC. RegnaultB. AmiotA. Tran-Van-NhieuJ. RavelJ. SobhaniI. SansonettiP.J. PédronT. Crypt- and mucosa-associated core microbiotas in humans and their alteration in colon cancer patients.MBio2019104e01315e0131910.1128/mBio.01315‑19 31311881
    [Google Scholar]
  171. NighotM. RawatM. Al-SadiR. CastilloE.F. NighotP. MaT.Y. Lipopolysaccharide-induced increase in intestinal permeability is mediated by tak-1 activation of ikk and mlck/mylk gene.Am. J. Pathol.2019189479781210.1016/j.ajpath.2018.12.016 30711488
    [Google Scholar]
  172. SongW. TiruthaniK. WangY. ShenL. HuM. DoroshevaO. QiuK. KinghornK.A. LiuR. HuangL. Trapping of lipopolysaccharide to promote immunotherapy against colorectal cancer and attenuate liver metastasis.Adv. Mater.20183052180500710.1002/adma.201805007 30387230
    [Google Scholar]
  173. MaC.C. WangZ.L. XuT. HeZ.Y. WeiY.Q. The approved gene therapy drugs worldwide: From 1998 to 2019.Biotechnol. Adv.20204010750210.1016/j.biotechadv.2019.107502 31887345
    [Google Scholar]
  174. TangR. XuZ. Gene therapy: a double-edged sword with great powers.Mol. Cell. Biochem.20204741-2738110.1007/s11010‑020‑03834‑3 32696132
    [Google Scholar]
  175. AghamiriS. JafarpourA. MalekshahiZ.V. MahmoudiG.M. NegahdariB. Targeting siRNA in colorectal cancer therapy: Nanotechnology comes into view.J. Cell. Physiol.20192349148181482710.1002/jcp.28281 30919964
    [Google Scholar]
  176. YuM. WangH. ZhaoW. GeX. HuangW. LinF. TangW. LiA. LiuS. LiR.K. JiangS.H. XueJ. Targeting type Iγ phosphatidylinositol phosphate kinase overcomes oxaliplatin resistance in colorectal cancer.Theranostics20221294386439810.7150/thno.69863 35673560
    [Google Scholar]
  177. HuangC.Z. ZhouY. TongQ.S. DuanQ.J. ZhangQ. DuJ.Z. YaoX.Q. Precision medicine-guided co-delivery of ASPN siRNA and oxaliplatin by nanoparticles to overcome chemoresistance of colorectal cancer.Biomaterials202229012182710.1016/j.biomaterials.2022.121827 36228517
    [Google Scholar]
  178. SalehiK.A.M. KarpishehV. SahamiG.P. MelnikovaL.A. Olegovna ZekiyA. MohammadiM. Hojjat-FarsangiM. MajidiZ.N. MahmoodpoorA. HassanniaH. Aghebati-MalekiL. JafariR. Jadidi-NiaraghF. Blockade of CD73 using siRNA loaded chitosan lactate nanoparticles functionalized with TAT-hyaluronate enhances doxorubicin mediated cytotoxicity in cancer cells both in vitro and in vivo.Int. J. Biol. Macromol.202118684986310.1016/j.ijbiomac.2021.07.034 34245737
    [Google Scholar]
  179. GaoZ. DongK. ZhangH. The roles of CD73 in cancer.BioMed Res. Int.201420141910.1155/2014/460654 25126561
    [Google Scholar]
  180. GilleronJ. QuerbesW. ZeigererA. BorodovskyA. MarsicoG. SchubertU. ManygoatsK. SeifertS. AndreeC. StöterM. Epstein-BarashH. ZhangL. KotelianskyV. FitzgeraldK. FavaE. BickleM. KalaidzidisY. AkincA. MaierM. ZerialM. Image-based analysis of lipid nanoparticle–mediated siRNA delivery, intracellular trafficking and endosomal escape.Nat. Biotechnol.201331763864610.1038/nbt.2612 23792630
    [Google Scholar]
  181. LiP.P. YanY. ZhangH.T. CuiS. WangC.H. WeiW. QianH.G. WangJ.C. ZhangQ. Biological activities of siRNA-loaded lanthanum phosphate nanoparticles on colorectal cancer.J. Control. Release2020328455810.1016/j.jconrel.2020.08.027 32860924
    [Google Scholar]
  182. LiJ. ZhangJ. GaoY. LeiS. WuJ. ChenX. WangK. DuanX. MenK. Targeted sirna delivery by bioinspired cancer cell membrane-coated nanoparticles with enhanced anti-cancer immunity.Int. J. Nanomed.2023185961598210.2147/IJN.S429036 37901359
    [Google Scholar]
  183. RudzinskiW.E. PalaciosA. AhmedA. LaneM.A. AminabhaviT.M. Targeted delivery of small interfering RNA to colon cancer cells using chitosan and PEGylated chitosan nanoparticles.Carbohydr. Polym.201614732333210.1016/j.carbpol.2016.04.041 27178938
    [Google Scholar]
  184. RattiF. FiorentiniG. CiprianiF. CatenaM. PaganelliM. AldrighettiL. Laparoscopic vs open surgery for colorectal liver metastases.JAMA Surg.2018153111028103510.1001/jamasurg.2018.2107 30027220
    [Google Scholar]
  185. BalachandranV.P. AroraA. GönenM. ItoH. TurcotteS. ShiaJ. VialeA. SnoerenN. van HooffS.R. RinkesI.H.M.B. AdamR. KinghamT.P. AllenP.J. DeMatteoR.P. JarnaginW.R. D’AngelicaM.I. A validated prognostic multigene expression assay for overall survival in resected colorectal cancer liver metastases.Clin. Cancer Res.201622102575258210.1158/1078‑0432.CCR‑15‑1071 26733613
    [Google Scholar]
  186. MoultonC.A. GuC.S. LawC.H. TandanV.R. HartR. QuanD. Fairfull SmithR.J. JalinkD.W. HusienM. SerranoP.E. HendlerA.L. HaiderM.A. RuoL. GulenchynK.Y. FinchT. JulianJ.A. LevineM.N. GallingerS. Effect of PET before liver resection on surgical management for colorectal adenocarcinoma metastases: A randomized clinical trial.JAMA2014311181863186910.1001/jama.2014.3740 24825641
    [Google Scholar]
  187. ChangJ. NicolasE. MarksD. SanderC. LerroA. BuendiaM.A. XuC. MasonW.S. MoloshokT. BortR. ZaretK.S. TaylorJ.M. miR-122, a mammalian liver-specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1.RNA Biol.20041210611310.4161/rna.1.2.1066 17179747
    [Google Scholar]
  188. BandieraS. PfefferS. BaumertT.F. ZeiselM.B. miR-122 – A key factor and therapeutic target in liver disease.J. Hepatol.201562244845710.1016/j.jhep.2014.10.004 25308172
    [Google Scholar]
  189. SendiH. YazdimamaghaniM. HuM. SultanpuramN. WangJ. MoodyA.S. McCabeE. ZhangJ. GraboskiA. LiL. RojasJ.D. DaytonP.A. HuangL. WangA.Z. Nanoparticle delivery of mir-122 inhibits colorectal cancer liver metastasis.Cancer Res.202282110511310.1158/0008‑5472.CAN‑21‑2269 34753773
    [Google Scholar]
  190. NiuY. ZhaoX. WuY.S. LiM.M. WangX.J. YangY.G. N6-methyl-adenosine (m6A) in RNA: An old modification with a novel epigenetic function.Genomics Proteomics Bioinformatics201311181710.1016/j.gpb.2012.12.002 23453015
    [Google Scholar]
  191. HuangR. YangL. ZhangZ. LiuX. FeiY. TongW.M. NiuY. LiangZ. RNA m(6)a demethylase alkbh5 protects against pancreatic ductal adenocarcinoma via targeting regulators of iron metabolism.Front. Cell Dev. Biol.2021972428210.3389/fcell.2021.724282 34733841
    [Google Scholar]
  192. TsuchiyaK. YoshimuraK. IwashitaY. InoueY. OhtaT. WatanabeH. YamadaH. KawaseA. TanahashiM. OgawaH. FunaiK. ShinmuraK. SudaT. SugimuraH. m6A demethylase ALKBH5 promotes tumor cell proliferation by destabilizing IGF2BPs target genes and worsens the prognosis of patients with non-small-cell lung cancer.Cancer Gene Ther.202229101355137210.1038/s41417‑022‑00451‑8 35318440
    [Google Scholar]
  193. JinS. LiM. ChangH. WangR. ZhangZ. ZhangJ. HeY. MaH. The m6A demethylase ALKBH5 promotes tumor progression by inhibiting RIG-I expression and interferon alpha production through the IKKε/TBK1/IRF3 pathway in head and neck squamous cell carcinoma.Mol. Cancer20222119710.1186/s12943‑022‑01572‑2 35395767
    [Google Scholar]
  194. ShenC. ShengY. ZhuA.C. RobinsonS. JiangX. DongL. ChenH. SuR. YinZ. LiW. DengX. ChenY. HuY.C. WengH. HuangH. PrinceE. CogleC.R. SunM. ZhangB. ChenC.W. MarcucciG. HeC. QianZ. ChenJ. Rna demethylase alkbh5 selectively promotes tumorigenesis and cancer stem cell self-renewal in acute myeloid leukemia.Cell Stem Cell20202716480.e910.1016/j.stem.2020.04.009 32402250
    [Google Scholar]
  195. ChenP. LiS. ZhangK. ZhaoR. CuiJ. ZhouW. LiuY. ZhangL. ChengY. N6-methyladenosine demethylase ALKBH5 suppresses malignancy of esophageal cancer by regulating microRNA biogenesis and RAI1 expression.Oncogene202140375600561210.1038/s41388‑021‑01966‑4 34312488
    [Google Scholar]
  196. IslamM.A. XuY. TaoW. UbellackerJ.M. LimM. AumD. LeeG.Y. ZhouK. ZopeH. YuM. CaoW. OswaldJ.T. DinarvandM. MahmoudiM. LangerR. KantoffP.W. FarokhzadO.C. ZetterB.R. ShiJ. Restoration of tumour-growth suppression in vivo via systemic nanoparticle-mediated delivery of PTEN mRNA.Nat. Biomed. Eng.201821185086410.1038/s41551‑018‑0284‑0 31015614
    [Google Scholar]
  197. IslamM.A. ReesorE.K.G. XuY. ZopeH.R. ZetterB.R. ShiJ. Biomaterials for mRNA delivery.Biomater. Sci.20153121519153310.1039/C5BM00198F 26280625
    [Google Scholar]
  198. StrużyńskaL. Dual implications of nanosilver-induced autophagy: Nanotoxicity and anti-cancer effects.Int. J. Mol. Sci.202324201538610.3390/ijms242015386 37895066
    [Google Scholar]
  199. DeobagkarD.D. PatilN. GadeW.N. Epigenetic modulation upon exposure of lung fibroblasts to TiO2 and ZnO nanoparticles: Alterations in DNA methylation.Int. J. Nanomed.2016114509451910.2147/IJN.S110390 27660443
    [Google Scholar]
  200. Najahi-MissaouiW. ArnoldR.D. CummingsB.S. Safe nanoparticles: Are we there yet?Int. J. Mol. Sci.202022138510.3390/ijms22010385 33396561
    [Google Scholar]
  201. LiL. SunJ. LiX. ZhangY. WangZ. WangC. DaiJ. WangQ. Controllable synthesis of monodispersed silver nanoparticles as standards for quantitative assessment of their cytotoxicity.Biomaterials20123361714172110.1016/j.biomaterials.2011.11.030 22137123
    [Google Scholar]
  202. De JongW.H. Van Der VenL.T.M. SleijffersA. ParkM.V.D.Z. JansenE.H.J.M. Van LoverenH. VandebrielR.J. Systemic and immunotoxicity of silver nanoparticles in an intravenous 28 days repeated dose toxicity study in rats.Biomaterials201334338333834310.1016/j.biomaterials.2013.06.048 23886731
    [Google Scholar]
  203. MasottiA. MillerM.R. CelluzziA. RoseL. MicciullaF. HadokeP.W.F. BellucciS. CaporaliA. Regulation of angiogenesis through the efficient delivery of microRNAs into endothelial cells using polyamine-coated carbon nanotubes.Nanomedicine20161261511152210.1016/j.nano.2016.02.017 27013131
    [Google Scholar]
  204. HoshyarN. GrayS. HanH. BaoG. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction.Nanomedicine (Lond.)201611667369210.2217/nnm.16.5 27003448
    [Google Scholar]
  205. MoghimiS.M. HunterA.C. AndresenT.L. Factors controlling nanoparticle pharmacokinetics: An integrated analysis and perspective.Annu. Rev. Pharmacol. Toxicol.201252148150310.1146/annurev‑pharmtox‑010611‑134623 22035254
    [Google Scholar]
  206. ZhangY.N. PoonW. TavaresA.J. McGilvrayI.D. ChanW.C.W. Nanoparticle–liver interactions: Cellular uptake and hepatobiliary elimination.J. Control. Release201624033234810.1016/j.jconrel.2016.01.020 26774224
    [Google Scholar]
  207. CisternaB.A. KamalyN. ChoiW.I. TavakkoliA. FarokhzadO.C. VilosC. Targeted nanoparticles for colorectal cancer.Nanomedicine (Lond.)201611182443245610.2217/nnm‑2016‑0194 27529192
    [Google Scholar]
  208. GuoY. WangM. ZouY. JinL. ZhaoZ. LiuQ. WangS. LiJ. Mechanisms of chemotherapeutic resistance and the application of targeted nanoparticles for enhanced chemotherapy in colorectal cancer.J. Nanobiotechnol.202220137110.1186/s12951‑022‑01586‑4 35953863
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206323900240807110122
Loading
/content/journals/acamc/10.2174/0118715206323900240807110122
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): application; Colorectal cancer; diagnosis; nanomedicine; nanoparticles; treatment
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test