Skip to content
2000
image of A Path to the Formation Mechanism of Propolis Nanoparticles, their Cytotoxicity on 3T3 Fibroblasts, Metastatic Murine B16F10 Cells, and their In vivo Irritability in Animals

Abstract

Background

Natural products such as propolis are an important source of biologically active compounds with the potential to treat health disorders. Propolis is a well-known waxy resin recognized for its antimicrobial immunomodulatory and cytotoxic effects

Objective

In this study we aimed to clarify the formation mechanism of propolis nanoparticles from the perspective of their stability and chemical composition. By evaluating the light absorption behaviour of the nanoparticles formed in different media and quantifying the polyphenols we show that they are superficially hydrophobic nanoparticles with the capacity to encapsulate some polar compounds

Methods

Biological activity was evaluated by cell viability performed on NIH/3T3 fibroblasts incubated with 10 100 and 1000 μg/mL of propolis nanoparticles for 48 hours

Results

The results show that nanoparticles are cytocompatible with a proliferation effect. In contrast the results of the viability of metastatic murine B16F10 cells indicate that a dose with a concentration of 5 µg/mL in the cell culture media is sufficient to stop the abnormal cell growth having an antitumor effect. This effect might be related to the flavonoids present in the propolis nanoparticles. dermal irritability tests on New Zealand rabbits show that propolis nanoparticles' aqueous dissolution was non-irritant

Conclusion

According to the results obtained from this study reducing the size of raw propolis down to nanoparticles and dispersing them in water solvents enhance its positive effects. superficially hydrophobic propolis nanoparticles encapsulate active compounds such as polyphenols and flavonoids which also confirms their ability to generate selective effects on the cells depending on their nature

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206316231250218063957
2025-02-26
2025-03-26
Loading full text...

Full text loading...

References

  1. Proestos C. The benefits of plant extracts for human health. Foods 2020 9 11 1653 10.3390/foods9111653 33198209
    [Google Scholar]
  2. Veiga M. Costa E.M. Silva S. Pintado M. Impact of plant extracts upon human health: A review. Crit. Rev. Food Sci. Nutr. 2020 60 5 873 886 10.1080/10408398.2018.1540969 30501504
    [Google Scholar]
  3. Toxicity of saffron extracts on cancer and normal cells: A review article Asian Pac J Cancer Prev. 2020 21 7 1867 1875
    [Google Scholar]
  4. Cheimonidi C. Samara P. Polychronopoulos P. Tsakiri E.N. Nikou T. Myrianthopoulos V. Sakellaropoulos T. Zoumpourlis V. Mikros E. Papassideri I. Argyropoulou A. Halabalaki M. Alexopoulos L.G. Skaltsounis A.L. Tsitsilonis O.E. Aligiannis N.N. Trougakos I.P. Selective cytotoxicity of the herbal substance acteoside against tumor cells and its mechanistic insights. Redox Biol. 2018 16 169 178 10.1016/j.redox.2018.02.015 29505920
    [Google Scholar]
  5. Wigner Paulina The Green anti-cancer weapon. The role of natural compounds in bladder cancer treatment Int. J. Mol. Sci. 2021 XXII 15
    [Google Scholar]
  6. Newman D.J. Cragg G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod. 2016 79 3 629 661 10.1021/acs.jnatprod.5b01055 26852623
    [Google Scholar]
  7. Trisciuoglio D. Uranchimeg B. Cardellina J.H. Meragelman T.L. Matsunaga S. Fusetani N. Del Bufalo D. Shoemaker R.H. Melillo G. Induction of apoptosis in human cancer cells by candidaspongiolide, a novel sponge polyketide. J. Natl. Cancer Inst. 2008 100 17 1233 1246 10.1093/jnci/djn239 18728285
    [Google Scholar]
  8. Bhavana V. Sudharshan S. Madhu D. Natural Anticancer Compounds and Their Derivatives in Clinical Trials,» de Anticancer Plants: Clinical Trials and Nanotechnology. Springer Singapore 2018
    [Google Scholar]
  9. Ruffa M.J. Ferraro G. Wagner M.L. Calcagno M.L. Campos R.H. Cavallaro L. Cytotoxic effect of Argentine medicinal plant extracts on human hepatocellular carcinoma cell line. J. Ethnopharmacol. 2002 79 3 335 339 10.1016/S0378‑8741(01)00400‑7 11849838
    [Google Scholar]
  10. Díaz Cecilia Chemical composition of Schinus molle essential oil and its cytotoxic activity on tumour cell lines. Nat. Prod. Res. 2008 XXII 17 1521 1534 19023816
    [Google Scholar]
  11. E M. Phytochemical analysis, antimicrobial, antioxidant, and cytotoxicity activities of Schinus molle (L.) extracts Biomass Conv. Bioref. 2024 2024
    [Google Scholar]
  12. Adebayo I.A. Arsad H. Samian M.R. Antiproliferative effect on breast cancer (MCF7) of moringa oleifera seed extracts. Afr. J. Tradit. Complement. Altern. Med. 2017 14 2 282 287 10.21010/ajtcam.v14i2.30 28573245
    [Google Scholar]
  13. M. Moremane Malebogo Moringa oleifera: A review on the antiproliferative potential in breast cancer cells Curr. Issues Mol. Biol. 2023 XLV 8 6880 6902 37623253
    [Google Scholar]
  14. Alwhibi M.S. Khalil M.I.M. Ibrahim M.M. El-Gaaly G.A. Sultan A.S. Potential antitumor activity and apoptosis induction of Glossostemon bruguieri root extract against hepatocellular carcinoma cells. Evid. Based Complement. Alternat. Med. 2017 2017 1 7218562 10.1155/2017/7218562 28421122
    [Google Scholar]
  15. Al-Snafi A. Medical importance of glossostemon bruguieri – A Review. IOSR J. Pharm. 2019 IX 5 2319 4219
    [Google Scholar]
  16. Sulaiman G.M. Sammarrae K.W.A. Ad’hiah A.H. Zucchetti M. Frapolli R. Bello E. Erba E. D’Incalci M. Bagnati R. Chemical characterization of Iraqi propolis samples and assessing their antioxidant potentials. Food Chem. Toxicol. 2011 49 9 2415 2421 10.1016/j.fct.2011.06.060 21723909
    [Google Scholar]
  17. Przybyłek Izabela Antibacterial properties of Propolis. Molecules 2019 XXIV 11
    [Google Scholar]
  18. Silva J.C. Rodrigues S. Feás X. Estevinho L.M. Antimicrobial activity, phenolic profile and role in the inflammation of propolis. Food Chem. Toxicol. 2012 50 5 1790 1795 10.1016/j.fct.2012.02.097 22425940
    [Google Scholar]
  19. M Ożarowski Antifungal properties of chemically defined propolis from various geographical regions. Microorganisms 2022 10 2 364
    [Google Scholar]
  20. A Magnavacca The antiviral and immunomodulatory activities of propolis: An update and future perspectives for respiratory diseases Med. Res. Rev. 2021 42 2 897 945 34725836
    [Google Scholar]
  21. Athikomkulchai S. Awale S. Ruangrungsi N. Ruchirawat S. Kadota S. Chemical constituents of Thai propolis. Fitoterapia 2013 88 96 100 10.1016/j.fitote.2013.04.008 23660244
    [Google Scholar]
  22. Altabbal Suhib Propolis: A detailed insight of its anticancer molecular mechanisms Pharmaceuticals (Basel) 2023 16 3 450
    [Google Scholar]
  23. M Alvear Geographic Area of Collection Determines the Chemical Composition and Antimicrobial Potential of Three Extracts of Chilean Propolis Plants 2021 10 8 1543
    [Google Scholar]
  24. AL-Waili Noori Synergistic effects of honey and propolis toward drug multi-resistant Staphylococcus aureus, Escherichia coli and Candida albicans isolates in single and polymicrobial cultures Int. J. Med. Sci. 2012 9 9 793 800 23136543
    [Google Scholar]
  25. Marcucci M.C. Propolis: chemical composition, biological properties and therapeutic activity. Apidologie (Celle) 1995 26 2 83 99 10.1051/apido:19950202
    [Google Scholar]
  26. Marcucci M.C. Ferreres F. García-Viguera C. Bankova V.S. De Castro S.L. Dantas A.P. Valente P.H.M. Paulino N. Phenolic compounds from Brazilian propolis with pharmacological activities. J. Ethnopharmacol. 2001 74 2 105 112 10.1016/S0378‑8741(00)00326‑3 11167028
    [Google Scholar]
  27. D Tran Trong Lessons from exploring chemical space and chemical diversity of propolis components Int. J. Mol. Sci. 2020 21 14 4988
    [Google Scholar]
  28. Viuda-Martos M. Ruiz-Navajas Y. Fernández-López J. Pérez-Álvarez J.A. Functional properties of honey, propolis, and royal jelly. J. Food Sci. 2008 73 9 R117 R124 10.1111/j.1750‑3841.2008.00966.x 19021816
    [Google Scholar]
  29. CO Frozza Chemical characterization, antioxidant and cytotoxic activities of Brazilian red propolis. Food Chem Toxicol. 2013 52 137 142
    [Google Scholar]
  30. Nunes Oliveira Renata FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Materia (Rio J.) 2016 21 3 767 779
    [Google Scholar]
  31. Chan G.C.F. Cheung K.W. Sze D.M.Y. The immunomodulatory and anticancer properties of propolis. Clin. Rev. Allergy Immunol. 2013 44 3 262 273 10.1007/s12016‑012‑8322‑2 22707327
    [Google Scholar]
  32. Hayat Jaadan Phytochemical screening, polyphenols, flavonoids and tannin content, antioxidant activities and FTIR characterization of Marrubium vulgare L. from 2 different localities of Northeast of Morocco Heliyon 2020 6 11 e05609
    [Google Scholar]
  33. Kumazawa S. Hamasaka T. Nakayama T. Antioxidant activity of propolis of various geographic origins. Food Chem. 2004 84 3 329 339 10.1016/S0308‑8146(03)00216‑4
    [Google Scholar]
  34. Li F. Awale S. Tezuka Y. Kadota S. Cytotoxic constituents from Brazilian red propolis and their structure–activity relationship. Bioorg. Med. Chem. 2008 16 10 5434 5440 10.1016/j.bmc.2008.04.016 18440233
    [Google Scholar]
  35. Cheung K.W. Sze D.M.Y. Chan W.K. Deng R.X. Tu W. Chan G.C.F. Brazilian green propolis and its constituent, Artepillin C inhibits allogeneic activated human CD4 T cells expansion and activation. J. Ethnopharmacol. 2011 138 2 463 471 10.1016/j.jep.2011.09.031 21964192
    [Google Scholar]
  36. Kimoto T. Arai S. Kohguchi M. Aga M. Nomura Y. Micallef M.J. Kurimoto M. Mito K. Apoptosis and suppression of tumor growth by artepillin C extracted from Brazilian propolis. Cancer Detect. Prev. 1998 22 6 506 515 10.1046/j.1525‑1500.1998.00020.x 9824373
    [Google Scholar]
  37. Chen M.J. Chang W.H. Lin C.C. Liu C.Y. Wang T.E. Chu C.H. Shih S.C. Chen Y.J. Caffeic acid phenethyl ester induces apoptosis of human pancreatic cancer cells involving caspase and mitochondrial dysfunction. Pancreatology 2008 8 6 558 565 10.1159/000159214 18824880
    [Google Scholar]
  38. Chang H. Wang Y. Yin X. Liu X. Xuan H. Ethanol extract of propolis and its constituent caffeic acid phenethyl ester inhibit breast cancer cells proliferation in inflammatory microenvironment by inhibiting TLR4 signal pathway and inducing apoptosis and autophagy. BMC Complement. Altern. Med. 2017 17 1 471 10.1186/s12906‑017‑1984‑9 28950845
    [Google Scholar]
  39. AR Caetano Phenolic compounds contribution to portuguese propolis anti-melanoma activity Molecules 2023 28 7 3107
    [Google Scholar]
  40. Ozturk G. Ginis Z. Akyol S. Erden G. Gurel A. Akyol O. The anticancer mechanism of caffeic acid phenethyl ester (CAPE): review of melanomas, lung and prostate cancers. Eur. Rev. Med. Pharmacol. Sci. 2012 16 15 2064 2068 23280020
    [Google Scholar]
  41. Watkins R. Wu L. Zhang C. Davis R.M. Xu B. Natural product-based nanomedicine: Recent advances and issues. Int. J. Nanomedicine 2015 10 6055 6074 26451111
    [Google Scholar]
  42. Jayakumar R. Ramya C. Kumar P. Snima K. Lakshmanan V. Shantikumar N. In vitro anti-cancerous and anti-microbial activity of propolis nanoparticles. J. Nanopharm. Drug Deliv. 2012 1 1 1 7
    [Google Scholar]
  43. González-Masís J. Cubero-Sesin J.M. Corrales-Ureña Y.R. González-Camacho S. Mora-Ugalde N. Baizán-Rojas M. Loaiza R. Vega-Baudrit J.R. González-Paz R.J. Increased Fibroblast Metabolic Activity of Collagen Scaffolds via the Addition of Propolis Nanoparticles. Materials (Basel) 2020 13 14 3118 10.3390/ma13143118 32668654
    [Google Scholar]
  44. González-Masís Jeimmy Nonirritant and cytocompatible tinospora cordifolia nanoparticles for topical antioxidant treatments. Int. J. Biomater. 2020 2020 3637098
    [Google Scholar]
  45. BD Chithrani Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells Nano Lett. 2006 6 4 662 668
    [Google Scholar]
  46. Wu Meiyu Size-dependent cellular uptake and localization profiles of silver nanoparticles Int. J. Nanomedicine 2019 14 4247 4259
    [Google Scholar]
  47. Salah N. Miller N. J. Paganga G. Tijburg L. Bolwell G. P. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys. 1995 322 2 339 346
    [Google Scholar]
  48. L Kubiliene Alternative preparation of propolis extracts: comparison of their composition and biological activities BMC Complement. Altern. Med. 2015 15 156
    [Google Scholar]
  49. Correa-Pacheco Zormy Nacary Physicochemical characterization and antimicrobial activity of edible propolis-chitosan nanoparticle films Prog Org Coat. 2019 137 105326
    [Google Scholar]
  50. Sharaf S Propolis induced antibacterial activity and other technical properties of cotton textiles Int. J. Biol. Macromol. 2013 LIX 408 416
    [Google Scholar]
  51. Ahmed Moussa FTIR characterization of Sahara honey and propolis and evaluation of its anticandidal potentials Acta Scientifica 2020 7 3 46 57
    [Google Scholar]
  52. Hegazi A G Egyptian propolis 14: Potential antibacterial activity of propolis-encapsulated alginate nanoparticles against different pathogenic bacteria strains Adv. Nat. Sci: Nanosci. Nanotechnol. 2019 10 045019
    [Google Scholar]
  53. Basyirah Nur Application of FTIR fingerprints coupled with chemometric for comparison of stingless bee propolis from different extraction methods. Malays. J. Fundam. Appl. Sci. 2019 15 350 355
    [Google Scholar]
  54. Cao Jun Ultrasound-assisted ionic liquid-based micellar extraction combined with microcrystalline cellulose as sorbent in dispersive microextraction for the determination of phenolic compounds in propolis. Analytica Chimica Acta 2017 963 24 32
    [Google Scholar]
  55. L Svečnjak Mediterranean propolis from the adriatic sea islands as a source of natural antioxidants: Comprehensive chemical biodiversity determined by GC-MS, FTIR-ATR, UHPLC-DAD-QqTOF-MS, DPPH and FRAP assay Antioxidants (Basel). 2020 9 4 337
    [Google Scholar]
  56. da Silva, Cleidiane Determination of total phenolic compounds and antioxidant activity of ethanolic extracts of Propolis using ATR–FT-IR spectroscopy and chemometrics. Food Anal. Methods 2018 11 7 2013 2021
    [Google Scholar]
  57. Dewi N. Wijaya C. Nasrullah N. Classification of Trigona spp bee propolis from four regions in Indonesia using FTIR metabolomics approach 2013
    [Google Scholar]
  58. Ibrahim Nurhamizah Application of GCMS and FTIR fingerprinting in discriminating two species of Malaysian stingless bees propolis IACSIT Int. J. Eng. Technol. 2018 VII 106 112
    [Google Scholar]
  59. Ru Lim Jin Study of stingless bee (Heterotrigona itama) propolis using LC-MS/MS and TGA-FTIR Appl Food Res. 2023 3 1 100252
    [Google Scholar]
  60. Fabris Sabrina Antioxidant properties and chemical composition relationship of Europeans and Brazilians propolis Pharmacology & Pharmacy. 2013 4 1 46 51
    [Google Scholar]
  61. Chen H.J. Inbaraj B.S. Chen B.H. Determination of phenolic acids and flavonoids in Taraxacum formosanum Kitam by liquid chromatography-tandem mass spectrometry coupled with a post-column derivatization technique. Int. J. Mol. Sci. 2011 13 1 260 285 10.3390/ijms13010260 22312251
    [Google Scholar]
  62. Halake K. Lee J. Functional hyaluronic acid conjugates based on natural polyphenols exhibit antioxidant, adhesive, gelation, and self-healing properties. J. Ind. Eng. Chem. 2017 54 44 51 10.1016/j.jiec.2017.04.018
    [Google Scholar]
  63. Masek A. Chrzescijanska E. Latos M. Kosmalska A. Electrochemical and Spectrophotometric Characterization of the Propolis Antioxidants Properties. Int. J. Electrochem. Sci. 2019 14 2 1231 1247 10.20964/2019.02.66
    [Google Scholar]
  64. Erdoğan Ü. Ultrasonic assisted propolis extraction: Characterization by ATR-FTIR and determination of its total antioxidant capacity and radical scavenging ability. International Journal of Secondary Metabolite 2023 10 2 231 239 10.21448/ijsm.1167773
    [Google Scholar]
  65. González-Paz R. Cádiz V. Kiara R. Vega-Baudrit J. Isomerization of Fatty Acids: A Cellular Barrier Mechanism in Nanotechnology? J. Nanosci. Nanotechnol. 2017 17 8 5436 5444 10.1166/jnn.2017.13791
    [Google Scholar]
  66. O’Brien J. Wilson I. Orton T. Pognan F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000 267 17 5421 5426 10.1046/j.1432‑1327.2000.01606.x 10951200
    [Google Scholar]
  67. Munshi S. Twining R.C. Dahl R. Alamar blue reagent interacts with cell-culture media giving different fluorescence over time: Potential for false positives. J. Pharmacol. Toxicol. Methods 2014 70 2 195 198 10.1016/j.vascn.2014.06.005 24933394
    [Google Scholar]
  68. Rampersad S.N. Multiple applications of Alamar Blue as an indicator of metabolic function and cellular health in cell viability bioassays. Sensors (Basel) 2012 12 9 12347 12360 10.3390/s120912347 23112716
    [Google Scholar]
  69. Jacob A. Parolia A. Pau A. Davamani Amalraj F. The effects of Malaysian propolis and Brazilian red propolis on connective tissue fibroblasts in the wound healing process. BMC Complement. Altern. Med. 2015 15 1 294 10.1186/s12906‑015‑0814‑1 26303848
    [Google Scholar]
  70. Olczyk P. Wisowski G. Komosinska-Vassev K. Stojko J. Klimek K. Olczyk M. Kozma E.M. Propolis modifies collagen types i and iii accumulation in the matrix of burnt tissue. Evid. Based Complement. Alternat. Med. 2013 2013 1 10 10.1155/2013/423809 23781260
    [Google Scholar]
  71. Elkhenany H. El-Badri N. Dhar M. Green propolis extract promotes in vitro proliferation, differentiation, and migration of bone marrow stromal cells. Biomed. Pharmacother. 2019 115 108861 10.1016/j.biopha.2019.108861 31005795
    [Google Scholar]
  72. Gjertsen A.W. Stothz K.A. Neiva K.G. Pileggi R. «Effect of propolis on proliferation and apoptosis of periodontal ligament fibroblasts,» Oral Surgery, Oral Medicine, Oral Pathology, and Oral Radiology. Endodontology 2011 112 6 843 848
    [Google Scholar]
  73. C. Dieter Abigail Flow cytometry methods for targeted isolation of ctenophore cells Front Mar Sci. 2023 10
    [Google Scholar]
  74. N. &. J. J. M. Oršolić, « Molecular and cellular mechanisms of Propolis and its polyphenolic compounds against cancer.,». Int. J. Mol. Sci. 2022 XXIII 18
    [Google Scholar]
  75. Sung S.H. Choi G.H. Lee N.W. Shin B.C. External use of propolis for oral, skin, and genital diseases: A systematic review and meta‐analysis. Evid. Based Complement. Alternat. Med. 2017 2017 1 8025752 10.1155/2017/8025752 28265293
    [Google Scholar]
  76. Valero da Silva M. Gomes de Moura Jr N. Barretto Motoyama A. Moraes Ferreira V. A review of the potential therapeutic and cosmetic use of propolis in topical formulations J Appl Pharm Sci. 2019 10 1 131 141
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206316231250218063957
Loading
/content/journals/acamc/10.2174/0118715206316231250218063957
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: fibroblasts ; cancer cells ; nanoparticles ; flavonoids ; erythema ; Propolis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test