
Full text loading...
Cancer presents a significant global health challenge, necessitating effective treatment strategies. While chemotherapy is widely employed, its non-specific nature can induce adverse effects on normal cells, prompting the exploration of targeted therapies. The 1,2,4-triazole scaffold has emerged as a promising element in anticancer drug development due to its structural diversity and potential to target cancer cells.
This study aims to synthesize and evaluate novel derivatives derived from the 1,2,4-triazole scaffold for their potential as anticancer agents. Molecular docking techniques are employed to investigate the interactions between the designed derivatives and specific cancer-related targets, providing insights into potential underlying mechanisms.
The synthesis involves a three-step process to produce 5-oxo-1,2,4-triazole-3-carboxamide derivatives. Various analytical techniques, including NMR and HRMS, validate the successful synthesis. Molecular docking studies utilize X-ray crystal structures of EGFR and CDK-4 obtained from the Protein Data Bank, employing the Schrödinger suite for ligand preparation and Glide's extra-precision docking modes for scoring.
The synthesis yields compounds with moderate to good yields, supported by detailed characterization. Molecular docking scores for the derivatives against EGFR and CDK-4 revealed diverse affinities influenced by distinct substituents. Compounds with hydroxyl, and halogen, substitutions exhibited notable binding affinities, while alkyl and amino substitutions showed varying effects. The 1,2,4-triazole derivatives demonstrated potential for targeted cancer therapy.
The study highlights the successful synthesis of 5-oxo-1,2,4-triazole-3-carboxamides and their diverse interactions with cancer-related targets. The findings emphasized the potential of these derivatives as candidates for further development as anticancer agents, offering insights into structure-activity relationships. The 1,2,4-triazole scaffold stands out as a promising platform for advancing cancer treatment with enhanced precision and efficacy.