Skip to content
2000
Volume 24, Issue 19
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

The Prodiginins (PGs) natural pigments are secondary metabolites produced by a broad spectrum of gram-negative and gram-positive bacteria, notably by species within the and genera. These compounds exhibit diverse and potent biological activities, including anticancer, immunosuppressive, antimicrobial, antimalarial, and antiviral effects. Structurally, PGs share a common tripyrrolic core but possess variable side chains and undergo cyclization, resulting in structural diversity. Studies have investigated their antiproliferative effects on various cancer cell lines, with some PGs advancing to clinical trials for cancer treatment. This review aims to illuminate the molecular mechanisms underlying PG-induced apoptosis in cancer cells and explore the structure-activity relationships pertinent to their anticancer properties. Such insights may serve as a foundation for further research in anticancer drug development, potentially leading to the creation of novel, targeted therapies based on PGs or their derivatives.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206314212240805105735
2024-12-01
2025-05-25
Loading full text...

Full text loading...

References

  1. WilliamsonN.R. FineranP.C. LeeperF.J. SalmondG.P.C. The biosynthesis and regulation of bacterial prodiginines.Nat. Rev. Microbiol.200641288789910.1038/nrmicro1531 17109029
    [Google Scholar]
  2. UllahA. AzizT. UllahN. NawazT. Molecular mechanisms of sanguinarine in cancer prevention and treatment.Anticancer. Agents Med. Chem.202323776577810.2174/1871520622666220831124321 36045531
    [Google Scholar]
  3. UllahA. RazzaqA. AlfaifiM.Y. ElbehairiS.E.I. MenaaF. UllahN. ShehzadiS. NawazT. IqbalH. Sanguinarine attenuates lung cancer progression via oxidative stress-induced cell apoptosis.Curr. Mol. Pharmacol.202417e1876142926938310.2174/0118761429269383231119062233 38389415
    [Google Scholar]
  4. WangZ. LiB. ZhouL. YuS. SuZ. SongJ. SunQ. ShaO. WangX. JiangW. WillertK. WeiL. CarsonD.A. LuD. Prodigiosin inhibits Wnt/β-catenin signaling and exerts anticancer activity in breast cancer cells.Proc. Natl. Acad. Sci. 201611346131501315510.1073/pnas.1616336113 27799526
    [Google Scholar]
  5. KapoorR. SainiA. SharmaD. Indispensable role of microbes in anticancer drugs and discovery trends.Appl. Microbiol. Biotechnol.202210613-164885490610.1007/s00253‑022‑12046‑2 35819512
    [Google Scholar]
  6. LawJ.W.F. LawL.N.S. LetchumananV. TanL.T.H. WongS.H. ChanK.G. Ab MutalibN.S. LeeL.H. Anticancer drug discovery from microbial sources: the unique mangrove streptomycetes.Molecules20202522536510.3390/molecules25225365 33212836
    [Google Scholar]
  7. BaindaraP. MandalS.M. Bacteria and bacterial anticancer agents as a promising alternative for cancer therapeutics.Biochimie202017716418910.1016/j.biochi.2020.07.020 32827604
    [Google Scholar]
  8. RivankarS. An overview of doxorubicin formulations in cancer therapy.J. Cancer Res. Ther.201410485385810.4103/0973‑1482.139267 25579518
    [Google Scholar]
  9. TakeuchiT. Antitumor antibiotics discovered and studied at the Institute of Microbial Chemistry.J. Cancer Res. Clin. Oncol.19951219-1050551010.1007/BF01197761 7559728
    [Google Scholar]
  10. HollsteinU. Actinomycin. Chemistry and mechanism of action.Chem. Rev.197474662565210.1021/cr60292a002
    [Google Scholar]
  11. RamosA. SadeghiS. TabatabaeianH. Battling chemoresistance in cancer: root causes and strategies to uproot them.Int. J. Mol. Sci.20212217945110.3390/ijms22179451 34502361
    [Google Scholar]
  12. LazaroJ.E.H. NitcheuJ. PredicalaR.Z. MangalindanG.C. NesslanyF. MarzinD. ConcepcionG.P. DiquetB. Heptyl prodigiosin, a bacterial metabolite, is antimalarial in vivo and non-mutagenic in vitro.J. Nat. Toxins2002114367377 12503881
    [Google Scholar]
  13. YipC.H. MahalingamS. WanK.L. NathanS. Prodigiosin inhibits bacterial growth and virulence factors as a potential physiological response to interspecies competition.PLoS One2021166e025344510.1371/journal.pone.0253445 34161391
    [Google Scholar]
  14. HanS.B. KimH.M. KimY.H. LeeC.W. JangE.S. SonK.H. KimS.U. KimY.K. T-cell specific immunosuppression by prodigiosin isolated from Serratia marcescens.Int. J. Immunopharmacol.1998201-311310.1016/S0192‑0561(97)00062‑3 9717078
    [Google Scholar]
  15. DarshanN. ManonmaniH.K. Prodigiosin and its potential applications.J. Food Sci. Technol.20155295393540710.1007/s13197‑015‑1740‑4 26344956
    [Google Scholar]
  16. HuD.X. WithallD.M. ChallisG.L. ThomsonR.J. Structure, chemical synthesis, and biosynthesis of prodiginine natural products.Chem. Rev.2016116147818785310.1021/acs.chemrev.6b00024 27314508
    [Google Scholar]
  17. MouslimA. MenggadS. HabtiN. AffarE.B. MenggadM. Antiproliferative effect on cancer cells of novel pink red-like pigments and derivatives produced by Streptomyces coelicoflavus strains.J. Cancer Res.2019712733
    [Google Scholar]
  18. KimD. LeeJ.S. ParkY.K. KimJ.F. JeongH. OhT.K. KimB.S. LeeC.H. Biosynthesis of antibiotic prodiginines in the marine bacterium Hahella chejuensis KCTC 2396.J. Appl. Microbiol.20071024937944 17381736
    [Google Scholar]
  19. LeeJ.S. KimY.S. ParkS. KimJ. KangS.J. LeeM.H. RyuS. ChoiJ.M. OhT.K. YoonJ.H. Exceptional production of both prodigiosin and cycloprodigiosin as major metabolic constituents by a novel marine bacterium, Zooshikella rubidus S1-1.Appl. Environ. Microbiol.201177144967497310.1128/AEM.01986‑10 21642414
    [Google Scholar]
  20. CerdeñoA.M. BibbM.J. ChallisG.L. Analysis of the prodiginine biosynthesis gene cluster of Streptomyces coelicolor A3(2): new mechanisms for chain initiation and termination in modular multienzymes.Chem. Biol.20018881782910.1016/S1074‑5521(01)00054‑0 11514230
    [Google Scholar]
  21. JiaX. Identification of essential genes associated with prodigiosin production in serratia marcescens FZSF02.Front. Microbiol.20211270585310.3389/fmicb.2021.705853
    [Google Scholar]
  22. LuY. LiuD. JiangR. LiZ. GaoX. Prodigiosin: unveiling the crimson wonder – a comprehensive journey from diverse bioactivity to synthesis and yield enhancement.Front. Microbiol.202415141277610.3389/fmicb.2024.1412776 38903802
    [Google Scholar]
  23. WilliamsonN.R. SimonsenH.T. AhmedR.A.A. GoldetG. SlaterH. WoodleyL. LeeperF.J. SalmondG.P.C. Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2‐methyl‐3‐n‐amyl‐pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces.Mol. Microbiol.200556497198910.1111/j.1365‑2958.2005.04602.x 15853884
    [Google Scholar]
  24. LiP. HeS. ZhangX. GaoQ. LiuY. LiuL. Structures, biosynthesis, and bioactivities of prodiginine natural products.Appl. Microbiol. Biotechnol.2022106237721773510.1007/s00253‑022‑12245‑x 36319792
    [Google Scholar]
  25. FeitelsonJ.S. MalpartidaF. HopwoodD.A. Genetic and biochemical characterization of the red gene cluster of Streptomyces coelicolor A3(2).Microbiology198513192431244110.1099/00221287‑131‑9‑2431 2999302
    [Google Scholar]
  26. GristwoodT. McNeilM.B. ClulowJ.S. SalmondG.P.C. FineranP.C. PigS and PigP regulate prodigiosin biosynthesis in Serratia via differential control of divergent operons, which include predicted transporters of sulfur-containing molecules.J. Bacteriol.201119351076108510.1128/JB.00352‑10 21183667
    [Google Scholar]
  27. KimD. Analysis of a prodigiosin biosynthetic gene cluster from the marine bacterium Hahella chejuensis KCTC 2396.J. Microbiol. Biotechnol.200616121912
    [Google Scholar]
  28. KwonS.K. ParkY.K. KimJ.F. Genome-wide screening and identification of factors affecting the biosynthesis of prodigiosin by Hahella chejuensis, using Escherichia coli as a surrogate host.Appl. Environ. Microbiol.20107651661166810.1128/AEM.01468‑09 20038694
    [Google Scholar]
  29. HarrisA.K.P. WilliamsonN.R. SlaterH. CoxA. AbbasiS. FouldsI. SimonsenH.T. LeeperF.J. SalmondG.P.C. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation.Microbiology2004150113547356010.1099/mic.0.27222‑0 15528645
    [Google Scholar]
  30. BorahS. MelvinM.S. LindquistN. MandervilleR.A. Copper-mediated nuclease activity of a tambjamine alkaloid.J. Am. Chem. Soc.1998120194557456210.1021/ja9729746
    [Google Scholar]
  31. ZhaoW. GaoD. NingL. JiangY. LiZ. HuangB. ChenA. WangC. LiuY. Prodigiosin inhibits the proliferation of glioblastoma by regulating the KIAA1524/PP2A signaling pathway.Sci. Rep.20221211852710.1038/s41598‑022‑23186‑w 36323805
    [Google Scholar]
  32. AnwarM.M. ShalabyM. EmbabyA.M. SaeedH. AgwaM.M. HusseinA. Prodigiosin/PU-H71 as a novel potential combined therapy for triple negative breast cancer (TNBC): preclinical insights.Sci. Rep.20201011470610.1038/s41598‑020‑71157‑w 32895397
    [Google Scholar]
  33. MelvinM.S. FergusonD.C. LindquistN. MandervilleR.A. DNA binding by 4-methoxypyrrolic natural products. Preference for intercalation at AT sites by tambjamine E and prodigiosin.J. Org. Chem.199964186861686910.1021/jo990944a 11674696
    [Google Scholar]
  34. MelvinM.S. TomlinsonJ.T. SalutaG.R. KuceraG.L. LindquistN. MandervilleR.A. Double-strand DNA cleavage by copper⊙ prodigiosin.J. Am. Chem. Soc.2000122266333633410.1021/ja0000798
    [Google Scholar]
  35. MelvinM.S. WootonK.E. RichC.C. SalutaG.R. KuceraG.L. LindquistN. MandervilleR.A. Copper-nuclease efficiency correlates with cytotoxicity for the 4-methoxypyrrolic natural products.J. Inorg. Biochem.200187312913510.1016/S0162‑0134(01)00338‑5 11730894
    [Google Scholar]
  36. MontanerB. Castillo-ÁvilaW. MartinellM. ÖllingerR. AymamiJ. GiraltE. Pérez-TomásR. DNA interaction and dual topoisomerase I and II inhibition properties of the anti-tumor drug prodigiosin.Toxicol. Sci.200585287087910.1093/toxsci/kfi149 15788728
    [Google Scholar]
  37. NguyenM. MarcellusR.C. RoulstonA. WatsonM. SerfassL. Murthy MadirajuS.R. GouletD. VialletJ. BélecL. BillotX. AcocaS. PurisimaE. WiegmansA. CluseL. JohnstoneR.W. BeauparlantP. ShoreG.C. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis.Proc. Natl. Acad. Sci.200710449195121951710.1073/pnas.0709443104 18040043
    [Google Scholar]
  38. HassankhaniR. SamM.R. EsmaeilouM. AhangarP. Prodigiosin isolated from cell wall of Serratia marcescens alters expression of apoptosis-related genes and increases apoptosis in colorectal cancer cells.Med. Oncol.201532136610.1007/s12032‑014‑0366‑0 25429836
    [Google Scholar]
  39. LiD. LiuJ. WangX. KongD. DuW. LiH. HseC.Y. ShupeT. ZhouD. ZhaoK. Biological potential and mechanism of prodigiosin from Serratia marcescens subsp. lawsoniana in human choriocarcinoma and prostate cancer cell lines.Int. J. Mol. Sci.20181911346510.3390/ijms19113465 30400387
    [Google Scholar]
  40. ChonghaileT.N. LetaiA. Mimicking the BH3 domain to kill cancer cells.Oncogene2008271S14910.1038/onc.2009.52
    [Google Scholar]
  41. BogerD.L. PatelM. Total synthesis of prodigiosin, prodigiosene, and desmethoxyprodigiosin: Diels-Alder reactions of heterocyclic azadienes and development of an effective palladium(II)-promoted 2,2′-bipyrrole coupling procedure.J. Org. Chem.19885371405141510.1021/jo00242a013
    [Google Scholar]
  42. MontanerB. Pérez-TomásR. The cytotoxic prodigiosin induces phosphorylation of p38-MAPK but not of SAPK/JNK.Toxicol. Lett.20021291-2939810.1016/S0378‑4274(01)00477‑5 11879978
    [Google Scholar]
  43. LuC.H. LinS.C. YangS.Y. PanM.Y. LinY.W. HsuC.Y. WeiY.H. ChangJ.S. ChangC.C. Prodigiosin-induced cytotoxicity involves RAD51 down-regulation through the JNK and p38 MAPK pathways in human breast carcinoma cell lines.Toxicol. Lett.20122121838910.1016/j.toxlet.2012.05.002 22579953
    [Google Scholar]
  44. ForgacM. Vacuolar ATPases: rotary proton pumps in physiology and pathophysiology.Nat. Rev. Mol. Cell Biol.200781191792910.1038/nrm2272 17912264
    [Google Scholar]
  45. NilssonC. JohanssonU. JohanssonA.C. KågedalK. ÖllingerK. Cytosolic acidification and lysosomal alkalinization during TNF-α induced apoptosis in U937 cells.Apoptosis20061171149115910.1007/s10495‑006‑7108‑5 16699952
    [Google Scholar]
  46. Lagadic-GossmannD. HucL. LecureurV. Alterations of intracellular pH homeostasis in apoptosis: origins and roles.Cell Death Differ.200411995396110.1038/sj.cdd.4401466 15195071
    [Google Scholar]
  47. GottliebR.A. Cell acidification in apoptosis.Apoptosis199611404810.1007/BF00142077
    [Google Scholar]
  48. StranskyL. CotterK. ForgacM. The function of V-ATPases in cancer.Physiol. Rev.20169631071109110.1152/physrev.00035.2015 27335445
    [Google Scholar]
  49. SatoT. KonnoH. TanakaY. KataokaT. NagaiK. WassermanH.H. OhkumaS. Prodigiosins as a new group of H+/Cl- symporters that uncouple proton translocators.J. Biol. Chem.199827334214552146210.1074/jbc.273.34.21455 9705273
    [Google Scholar]
  50. FranciscoR. Pérez-TomásR. Gimènez-BonaféP. Soto-CerratoV. Giménez-XavierP. AmbrosioS. Mechanisms of prodigiosin cytotoxicity in human neuroblastoma cell lines.Eur. J. Pharmacol.20075722-311111910.1016/j.ejphar.2007.06.054 17678643
    [Google Scholar]
  51. SesslerJ.L. EllerL.R. ChoW.S. NicolaouS. AguilarA. LeeJ.T. LynchV.M. MagdaD.J. Synthesis, anion-binding properties, and in vitro anticancer activity of prodigiosin analogues.Angew. Chem. Int. Ed.200544375989599210.1002/anie.200501740 16114075
    [Google Scholar]
  52. SeganishJ.L. DavisJ.T. Prodigiosin is a chloride carrier that can function as an anion exchanger.Chem. Commun. 2005465781578310.1039/b511847f 16307144
    [Google Scholar]
  53. LiuP. WangY. QiX. GuQ. GengM. LiJ. Undecylprodigiosin induced apoptosis in P388 cancer cells is associated with its binding to ribosome.PLoS One201386e6538110.1371/journal.pone.0065381 23799011
    [Google Scholar]
  54. MelvinM.S. CalcuttM.W. NoftleR.E. MandervilleR.A. Influence of the a-ring on the redox and nuclease properties of the prodigiosins: importance of the bipyrrole moiety in oxidative DNA cleavage.Chem. Res. Toxicol.200215574274810.1021/tx025508p 12018997
    [Google Scholar]
  55. PovirkL.F. HoganM. DattaguptaN. Binding of bleomycin to DNA: intercalation of the bithiazole rings.Biochemistry19791819610110.1021/bi00568a015 84680
    [Google Scholar]
  56. PaulV.J. LindquistN. FenicalW. Chemical defenses of the tropical ascidian Atapozoa sp. and its nudibranch predators Nembrotha spp.Mar. Ecol. Prog. Ser.1990591/210911810.3354/meps059109
    [Google Scholar]
  57. WassermanH.H. FriedlandD.J. MorrisonD.A. A novel dipyrrolyldipyrromethene prodigiosin analog from.Tetrahedron Lett.19689664164410.1016/S0040‑4039(00)75602‑4 4867609
    [Google Scholar]
  58. De RosaM. JohnsonS.A. OpreskoP.L. Roles for the 8-oxoguanine dna repair system in protecting telomeres from oxidative stress.Front. Cell Dev. Biol.2021975840210.3389/fcell.2021.758402
    [Google Scholar]
  59. MaA. DaiX. The relationship between DNA single-stranded damage response and double-stranded damage response.Cell Cycle2018171737910.1080/15384101.2017.1403681 29157089
    [Google Scholar]
  60. MelvinM.S. TomlinsonJ.T. ParkG. DayC.S. SalutaG.R. KuceraG.L. MandervilleR.A. Influence of the a-ring on the proton affinity and anticancer properties of the prodigiosins.Chem. Res. Toxicol.200215573474110.1021/tx025507x 12018996
    [Google Scholar]
  61. D’AlessioR. RossiA. Short synthesis of undecylprodigiosine. A new route to 2,2′-bipyrrolyl-pyrromethene systems.Synlett19961996651351410.1055/s‑1996‑5485
    [Google Scholar]
  62. D’AlessioR. BargiottiA. CarliniO. ColottaF. FerrariM. GnocchiP. IsettaA. MongelliN. MottaP. RossiA. RossiM. TibollaM. VanottiE. Synthesis and immunosuppressive activity of novel prodigiosin derivatives.J. Med. Chem.200043132557256510.1021/jm001003p 10891115
    [Google Scholar]
  63. HayakawaY. KawakamiK. SetoH. FurihataK. Structure of a new antibiotic, roseophilin.Tetrahedron Lett.199233192701270410.1016/S0040‑4039(00)79061‑7
    [Google Scholar]
  64. ParkG. TomlinsonJ.T. MelvinM.S. WrightM.W. DayC.S. MandervilleR.A. Zinc and copper complexes of prodigiosin: implications for copper-mediated double-strand DNA cleavage.Org. Lett.20035211311610.1021/ol027165s 12529118
    [Google Scholar]
  65. ParkG-S. TomlinsonJ.T. MisenheimerJ.A. KuceraG.L. MandervilleR.A. Photo-induced cytotoxicity of prodigiosin analogues.Bull. Korean Chem. Soc.2007281495210.5012/bkcs.2007.28.1.049
    [Google Scholar]
  66. MeshnickS.R. Chloroquine as intercalator: a hypothesis revived.Parasitol. Today199063777910.1016/0169‑4758(90)90215‑P 15463303
    [Google Scholar]
  67. SevrioukovaI.F. Apoptosis-inducing factor: structure, function, and redox regulation.Antioxid. Redox Signal.201114122545257910.1089/ars.2010.3445 20868295
    [Google Scholar]
  68. BoedtkjerE. PedersenS.F. The acidic tumor microenvironment as a driver of cancer.Annu. Rev. Physiol.202082110312610.1146/annurev‑physiol‑021119‑034627 31730395
    [Google Scholar]
  69. GerweckL.E. SeetharamanK. Cellular pH gradient in tumor versus normal tissue: potential exploitation for the treatment of cancer.Cancer Res.199656611941198 8640796
    [Google Scholar]
  70. ZhangX. LinY. GilliesR.J. Tumor pH and its measurement.J. Nucl. Med.20105181167117010.2967/jnumed.109.068981 20660380
    [Google Scholar]
  71. BaldinoC.M. ParrJ. WilsonC.J. NgS.C. YohannesD. WassermanH.H. Indoloprodigiosins from the C-10 bipyrrolic precursor: New antiproliferative prodigiosin analogs.Bioorg. Med. Chem. Lett.200616370170410.1016/j.bmcl.2005.10.027 16289814
    [Google Scholar]
  72. RegourdJ. Al-Sheikh AliA. ThompsonA. Synthesis and anti-cancer activity of C-ring-functionalized prodigiosin analogues.J. Med. Chem.20075071528153610.1021/jm061088f 17348639
    [Google Scholar]
  73. DíazR.I.S. RegourdJ. SantacroceP.V. DavisJ.T. JakemanD.L. ThompsonA. Chloride anion transport and copper-mediated DNA cleavage by C-ring functionalized prodigiosenes.Chem. Commun. 2007262701270310.1039/B701919J 17594025
    [Google Scholar]
  74. KapoorI. BodoJ. HillB.T. HsiE.D. AlmasanA. Targeting BCL-2 in B-cell malignancies and overcoming therapeutic resistance.Cell Death Dis.2020111194110.1038/s41419‑020‑03144‑y 33139702
    [Google Scholar]
  75. YuanB. HaoJ. ZhangQ. WangY. ZhuY. Role of Bcl 2 on drug resistance in breast cancer polyploidy induced spindle poisons.Oncol. Lett.20201931701171010.3892/ol.2020.11256 32194662
    [Google Scholar]
  76. PloumakiI. TriantafyllouE. KoumprentziotisI.A. KarampinosK. DrougkasK. KaravoliasI. TrontzasI. KotteasE.A. Bcl-2 pathway inhibition in solid tumors: a review of clinical trials.Clin. Transl. Oncol.20232561554157810.1007/s12094‑022‑03070‑9 36639602
    [Google Scholar]
  77. WolfP. BH3 mimetics for the treatment of prostate cancer.Front. Pharmacol.2017855710.3389/fphar.2017.00557
    [Google Scholar]
  78. Espona-FiedlerM. Manuel-ManresaP. Benítez-GarcíaC. FontovaP. QuesadaR. Soto-CerratoV. Pérez-TomásR. Antimetastatic properties of prodigiosin and the BH3-mimetic obatoclax (GX15-070) in melanoma.Pharmaceutics20221519710.3390/pharmaceutics15010097 36678726
    [Google Scholar]
  79. LimaK. VicariH.P. CarlosJ.A.E.G. da SilvaJ.C.L. Figueiredo-PontesL.L. RegoE.M. Machado-NetoJ.A. Obatoclax reduces cell viability of acute myeloid leukemia cell lines independently of their sensitivity to venetoclax.Hematol. Transfus. Cell Ther.202244112412710.1016/j.htct.2021.01.004 33753045
    [Google Scholar]
  80. GaoF. LanH. JiaoL. ZuoT. SunN. HuZ. HuangJ. Inhibitory effect of obatoclax mesylate-Loaded nanoparticles on lung cancer through Bcl-2 pathway.Mater. Express202313228328910.1166/mex.2023.2344
    [Google Scholar]
  81. DaïriK. YaoY. FaleyM. TripathyS. RiouxE. BillotX. RabouinD. GonzalezG. LavalléeJ-F. AttardoG. A scalable process for the synthesis of the bcl inhibitor obatoclax.Org. Process Res. Dev.20071161051105410.1021/op7001613
    [Google Scholar]
  82. MajiS. Chapter three - Bcl-2 antiapoptotic family proteins and chemoresistance in cancer.In: Advances in Cancer Research. TewK.D. FisherP.B. Academic Press2018Vol. 137377510.1016/bs.acr.2017.11.001
    [Google Scholar]
  83. LinS.R. ChenY.H. TsengF.J. WengC.F. The production and bioactivity of prodigiosin: quo vadis?Drug Discov. Today202025582883610.1016/j.drudis.2020.03.017 32251776
    [Google Scholar]
  84. Soto-CerratoV. ViñalsF. LambertJ.R. Pérez-TomásR. The anticancer agent prodigiosin induces p21WAF1/CIP1 expression via transforming growth factor-beta receptor pathway.Biochem. Pharmacol.20077491340134910.1016/j.bcp.2007.07.016 17765876
    [Google Scholar]
  85. YenkejehR.A. SamM.R. EsmaeillouM. Targeting survivin with prodigiosin isolated from cell wall of Serratia marcescens induces apoptosis in hepatocellular carcinoma cells.Hum. Exp. Toxicol.201736440241110.1177/0960327116651122 27334973
    [Google Scholar]
  86. ZhuZ. Unveiling the anticancer mechanisms of prodigiosin by inhibiting of CDK1, TOP2A, and AURKB expression in cervical carcinoma. [Epub ahead of Print].202410.21203/rs.3.rs‑3829039/v1
    [Google Scholar]
  87. HongB. PrabhuV.V. ZhangS. van den HeuvelA.P.J. DickerD.T. KopelovichL. El-DeiryW.S. Prodigiosin rescues deficient p53 signaling and antitumor effects via upregulating p73 and disrupting its interaction with mutant p53.Cancer Res.20147441153116510.1158/0008‑5472.CAN‑13‑0955 24247721
    [Google Scholar]
  88. YamamotoC. TakemotoH. KunoK. YamamotoD. NakaiK. BadenT. KamataK. HirataH. WatanabeT. InoueK. Cycloprodigiosin hydrochloride, a H+/Cl- symporter, induces apoptosis in human colon cancer cell lines in vitro.Oncol. Rep.20018482182410.3892/or.8.4.821 11410791
    [Google Scholar]
  89. BrancoP.C. PontesC.A. Rezende-TeixeiraP. Amengual-RigoP. Alves-FernandesD.K. Maria-EnglerS.S. da SilvaA.B. PessoaO.D.L. JimenezP.C. MollasalehiN. ChapmanE. GuallarV. Machado-NetoJ.A. Costa-LotufoL.V. Survivin modulation in the antimelanoma activity of prodiginines.Eur. J. Pharmacol.202088817346510.1016/j.ejphar.2020.173465 32814079
    [Google Scholar]
  90. MatarloJ.S. KrumpeL.R.H. HeinzW.F. OhD. ShenoyS.R. ThomasC.L. GoncharovaE.I. LockettS.J. O’KeefeB.R. The natural product butylcycloheptyl prodiginine binds pre-miR-21, inhibits Dicer-mediated processing of pre-miR-21, and blocks cellular proliferation.Cell Chem. Biol.201926811331142.e410.1016/j.chembiol.2019.04.011 31155509
    [Google Scholar]
  91. LiJ. XuJ. LiZ. Obatoclax, the pan-Bcl-2 inhibitor sensitizes hepatocellular carcinoma cells to promote the anti-tumor efficacy in combination with immune checkpoint blockade.Transl. Oncol.202114810111610.1016/j.tranon.2021.101116 33975180
    [Google Scholar]
  92. Abrahantes-PérezM.C. Reyes-GonzálezJ. Véliz RíosG. Bequet-RomeroM. Gómez RieraR. Anais GasmuryC. HuertaV. GonzálezL.J. CaninoC. GarciaJ. VáldezJ. ReyesB. VáldesR. MartínezE. Cytotoxic proteins combined with prodigiosin obtained from Serratia marcescens have both broad and selective cytotoxic activity on tumor cells. In: J. Chemother.200618217218110.1179/joc.2006.18.2.172 16736886
    [Google Scholar]
  93. BerningL. SchlütermannD. FriedrichA. BerlethN. SunY. WuW. MendiburoM.J. DeitersenJ. BrassH.U.C. SkowronM.A. HoffmannM.J. NiegischG. PietruszkaJ. StorkB. Prodigiosin sensitizes sensitive and resistant urothelial carcinoma cells to cisplatin treatment.Molecules2021265129410.3390/molecules26051294 33673611
    [Google Scholar]
  94. BrownJ.R. TesarB. YuL. WernerL. TakebeN. MiklerE. ReynoldsH.M. ThompsonC. FisherD.C. NeubergD. FreedmanA.S. Obatoclax in combination with fludarabine and rituximab is well-tolerated and shows promising clinical activity in relapsed chronic lymphocytic leukemia.Leuk. Lymphoma201556123336334210.3109/10428194.2015.1048441 25971907
    [Google Scholar]
  95. ChiapporiA.A. SchreederM.T. MoeziM.M. StephensonJ.J. BlakelyJ. SalgiaR. ChuQ.S. RossH.J. SubramaniamD.S. SchnyderJ. BergerM.S. A phase I trial of pan-Bcl-2 antagonist obatoclax administered as a 3-h or a 24-h infusion in combination with carboplatin and etoposide in patients with extensive-stage small cell lung cancer.Br. J. Cancer2012106583984510.1038/bjc.2012.21 22333598
    [Google Scholar]
  96. ChiapporiA. WilliamsC. NorthfeltD.W. AdamsJ.W. MalikS. EdelmanM.J. RosenP. Van EchoD.A. BergerM.S. HauraE.B. Obatoclax mesylate, a pan-bcl-2 inhibitor, in combination with docetaxel in a phase 1/2 trial in relapsed non-small-cell lung cancer.J. Thorac. Oncol.20149112112510.1097/JTO.0000000000000027 24346101
    [Google Scholar]
  97. PaikP.K. RudinC.M. BrownA. RizviN.A. TakebeN. TravisW. JamesL. GinsbergM.S. JuergensR. MarkusS. TysonL. SubzwariS. KrisM.G. KrugL.M. A phase I study of obatoclax mesylate, a Bcl-2 antagonist, plus topotecan in solid tumor malignancies.Cancer Chemother. Pharmacol.20106661079108510.1007/s00280‑010‑1265‑5 20165849
    [Google Scholar]
  98. PaikP.K. RudinC.M. PietanzaM.C. BrownA. RizviN.A. TakebeN. TravisW. JamesL. GinsbergM.S. JuergensR. MarkusS. TysonL. SubzwariS. KrisM.G. KrugL.M. A phase II study of obatoclax mesylate, a Bcl-2 antagonist, plus topotecan in relapsed small cell lung cancer.Lung Cancer201174348148510.1016/j.lungcan.2011.05.005 21620511
    [Google Scholar]
  99. Tunca KoyunM. SirinS. AslimB. TanerG. Nigdelioglu DolanbayS. Characterization of prodigiosin pigment by Serratia marcescens and the evaluation of its bioactivities.Toxicol. In Vitro20228210536810.1016/j.tiv.2022.105368 35476923
    [Google Scholar]
  100. GuryanovI. NaumenkoE. AkhatovaF. LazzaraG. CavallaroG. NigamatzyanovaL. FakhrullinR. Selective cytotoxic activity of prodigiosin@halloysite nanoformulation.Front. Bioeng. Biotechnol.2020842410.3389/fbioe.2020.00424 32528938
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206314212240805105735
Loading
/content/journals/acamc/10.2174/0118715206314212240805105735
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): Antiproliferative; bacterial pigments; Bcl-2; BH3 mimetics; PGs
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test