Skip to content
2000
Volume 24, Issue 18
  • ISSN: 1871-5206
  • E-ISSN:

Abstract

Background

Non-Small Cell Lung Cancer (NSCLC), a prevalent type of lung cancer, has a poor prognosis and contributes to a high mortality rate. Agrimonolide, which belongs to the Rosaceae family, possesses various biomedical activities. This study aimed to explore the efficacy and mechanism of agrimonolide in NSCLC.

Methods

The viability, proliferation, and tumor-forming ability of A549 cells were detected using the Cell Counting Kit-8 assay (CCK-8) assay, EdU staining, and colony formation assay. The cell cycle was detected using flow cytometry. Cell migration and invasion were detected using wound healing and transwell assays. Western blot was used to detect Epithelial-Mesenchymal Transition (EMT)-, ferroptosis-, and mechanistic targets of rapamycin (mTOR) signaling pathway-related proteins. Lipid peroxidation was detected using the thiobarbituric acid reactive substances (TBARS) assay kit, while lipid Reactive Oxygen Species (ROS) was detected using a BODIPY 581/591 C11 kit. The level of Fe2+ was detected using corresponding assay kits.

Results

In this study, agrimonolide with varying concentrations (10, 20, and 40 μM) could inhibit the proliferation, induce cycle arrest, suppress metastasis, induce ferroptosis, and block the mTOR signaling pathway in NSCLC cells. To further reveal the mechanism of agrimonolide associated with the mTOR signaling pathway in NSCLC, mTOR agonist MHY1485 (10 μM) was used to pre-treat A549 cells, and functional experiments were conducted again. It was found that the protective effects of AM on NSCLC cells were all partially abolished by MHY1485 pre-treatment.

Conclusion

Agrimonolide inhibited the malignant progression of NSCLC and induced ferroptosis by blocking the mTOR signaling pathway, thus indicating the potential of agrimonolide as a prospective candidate for treating NSCLC.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206305421240715042502
2024-11-01
2024-11-29
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.21708 35020204
    [Google Scholar]
  2. ChenZ. FillmoreC.M. HammermanP.S. KimC.F. WongK.K. Non-small-cell lung cancers: A heterogeneous set of diseases.Nat. Rev. Cancer201414853554610.1038/nrc3775 25056707
    [Google Scholar]
  3. ZhaoH. WangY. HeY. ZhangP. ZengC. DuT. ShenQ. ZhaoS. ANKRD29, as a new prognostic and immunological biomarker of non–small cell lung cancer, inhibits cell growth and migration by regulating MAPK signaling pathway.Biol. Direct20231812810.1186/s13062‑023‑00385‑7 37277814
    [Google Scholar]
  4. HerbstR.S. MorgenszternD. BoshoffC. The biology and management of non-small cell lung cancer.Nature2018553768944645410.1038/nature25183 29364287
    [Google Scholar]
  5. SantosT.N. CostaG. FerreiraJ.P. LiberalJ. FranciscoV. ParanhosA. CruzM.T. Castelo-BrancoM. FigueiredoI.V. BatistaM.T. Antioxidant, anti-inflammatory, and analgesic activities of Agrimonia eupatoria L. infusion.Evid. Based Complement. Alternat. Med.2017201711310.1155/2017/8309894 28491113
    [Google Scholar]
  6. JangH.H. NamS.Y. KimM.J. KimJ.B. ChoiJ.S. KimH.R. LeeY.M. Agrimonia pilosa Ledeb. aqueous extract improves impaired glucose tolerance in high-fat diet-fed rats by decreasing the inflammatory response.BMC Complement. Altern. Med.201717144210.1186/s12906‑017‑1949‑z 28870184
    [Google Scholar]
  7. LiuY. LiuX. WangH. DingP. WangC. Agrimonolide inhibits cancer progression and induces ferroptosis and apoptosis by targeting SCD1 in ovarian cancer cells.Phytomedicine202210115410210.1016/j.phymed.2022.154102 35526323
    [Google Scholar]
  8. HuangQ ChenL TengH SongH WuX Phenolic compounds ameliorate the glucose uptake in HepG2 cells’ insulin resistance via activating AMPK.J. Functional Foods20151948749410.1016/j.jff.2015.09.020
    [Google Scholar]
  9. YuL. GaiY. Elucidating the mechanism of agrimonolide in treating colon cancer based on network pharmacology.Drug Des. Devel. Ther.2023172209222210.2147/DDDT.S409530 37533972
    [Google Scholar]
  10. TengH. HuangQ. ChenL. Inhibition of cell proliferation and triggering of apoptosis by agrimonolide through MAP kinase (ERK and p38) pathways in human gastric cancer AGS cells.Food Funct.20167114605461310.1039/C6FO00715E 27747355
    [Google Scholar]
  11. BergheT.V. LinkermannA. Jouan-LanhouetS. WalczakH. VandenabeeleP. Regulated necrosis: The expanding network of non-apoptotic cell death pathways.Nat. Rev. Mol. Cell Biol.201415213514710.1038/nrm3737 24452471
    [Google Scholar]
  12. KimS.E. ZhangL. MaK. RiegmanM. ChenF. IngoldI. ConradM. TurkerM.Z. GaoM. JiangX. MonetteS. PauliahM. GonenM. ZanzonicoP. QuinnT. WiesnerU. BradburyM.S. OverholtzerM. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth.Nat. Nanotechnol.2016111197798510.1038/nnano.2016.164 27668796
    [Google Scholar]
  13. ZouJ. WangL. TangH. LiuX. PengF. PengC. Ferroptosis in non-small cell lung cancer: Progression and therapeutic potential on it.Int. J. Mol. Sci.202122241333510.3390/ijms222413335 34948133
    [Google Scholar]
  14. TanA.C. Targeting the PI3K/Akt/mTOR pathway in non‐small cell lung cancer (NSCLC).Thorac. Cancer202011351151810.1111/1759‑7714.13328 31989769
    [Google Scholar]
  15. ChenM. TanA. LiJ. Curcumin represses colorectal cancer cell proliferation by triggering ferroptosis via PI3K/Akt/mTOR signaling.Nutr. Cancer202375272673310.1080/01635581.2022.2139398 36346025
    [Google Scholar]
  16. HouL. YuanX. LeG. LinZ. GanF. LiH. HuangK. Fumonisin B1 induces nephrotoxicity via autophagy mediated by mTORC1 instead of mTORC2 in human renal tubule epithelial cells.Food Chem. Toxicol.202114911203710.1016/j.fct.2021.112037 33548371
    [Google Scholar]
  17. ChengG. WuJ. JiM. HuW. WuC. JiangJ. TET2 inhibits the proliferation and metastasis of lung adenocarcinoma cells via activation of the cGAS-STING signalling pathway.BMC Cancer202323182510.1186/s12885‑023‑11343‑x 37667220
    [Google Scholar]
  18. ZhengQ. ZhangJ. ZhangT. LiuY. DuX. DaiX. GuD. Hsa_circ_0000520 overexpression increases CDK2 expression via miR-1296 to facilitate cervical cancer cell proliferation.J. Transl. Med.202119131410.1186/s12967‑021‑02953‑9 34284793
    [Google Scholar]
  19. IsekiH. TakedaA. AndohT. KuwabaraK. TakahashiN. KurochkinI.V. IshidaH. OkazakiY. KoyamaI. ALEX1 suppresses colony formation ability of human colorectal carcinoma cell lines.Cancer Sci.201210371267127110.1111/j.1349‑7006.2012.02300.x 22494058
    [Google Scholar]
  20. KhanA. AldebasyY.H. AlsuhaibaniS.A. KhanM.A. Thymoquinone augments cyclophosphamide-mediated inhibition of cell proliferation in breast cancer cells.Asian Pac. J. Cancer Prev.20192041153116010.31557/APJCP.2019.20.4.1153 31030489
    [Google Scholar]
  21. JiaH. WuD. ZhangZ. LiS. Regulatory effect of the MAFG AS1/miR 150 5p/MYB axis on the proliferation and migration of breast cancer cells.Int. J. Oncol.2020581334410.3892/ijo.2020.5150 33367930
    [Google Scholar]
  22. LiJ. GuoY. DuanL. HuX. ZhangX. HuJ. HuangL. HeR. HuZ. LuoW. TanT. HuangR. LiaoD. ZhuY.S. LuoD.X. AKR1B10 promotes breast cancer cell migration and invasion via activation of ERK signaling.Oncotarget2017820336943370310.18632/oncotarget.16624 28402270
    [Google Scholar]
  23. ZhangY.H. PanL.H. PangY. YangJ.X. LvM.J. LiuF. QuX.F. ChenX.X. GongH.J. LiuD. WeiY. GDF11/BMP11 as a novel tumor marker for liver cancer.Exp. Ther. Med.20181543495350010.3892/etm.2018.5861 29545874
    [Google Scholar]
  24. SunQ. ZhenP. LiD. LiuX. DingX. LiuH. Amentoflavone promotes ferroptosis by regulating reactive oxygen species (ROS)/5’AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) to inhibit the malignant progression of endometrial carcinoma cells.Bioengineered2022135132691327910.1080/21655979.2022.2079256 35635082
    [Google Scholar]
  25. CarlsenC.U. KurtmannL. BrüggemannD.A. HoffS. RisboJ. SkibstedL.H. Investigation of oxidation in freeze-dried membranes using the fluorescent probe C11-BODIPY581/591.Cryobiology200958326226710.1016/j.cryobiol.2009.01.005 19444971
    [Google Scholar]
  26. LiT. TanY. OuyangS. HeJ. LiuL. Resveratrol protects against myocardial ischemia-reperfusion injury via attenuating ferroptosis.Gene202280814596810.1016/j.gene.2021.145968 34530090
    [Google Scholar]
  27. LiuJ. YuanS. YaoY. WangJ. ScalabrinoG. JiangS. SheridanH. Network pharmacology and molecular docking elucidate the underlying pharmacological mechanisms of the herb Houttuynia cordata in treating pneumonia caused by SARS-CoV-2.Viruses2022147158810.3390/v14071588 35891565
    [Google Scholar]
  28. ZhuW. LiY. ZhaoJ. WangY. LiY. WangY. The mechanism of triptolide in the treatment of connective tissue disease-related interstitial lung disease based on network pharmacology and molecular docking.Ann. Med.202254154155210.1080/07853890.2022.2034931 35132912
    [Google Scholar]
  29. SchiliroC. FiresteinB.L. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation.Cells2021105105610.3390/cells10051056 33946927
    [Google Scholar]
  30. ZangoueiA.S. ZangoueM. TaghehchianN. ZangooieA. RahimiH.R. SaburiE. AlaviM.S. MoghbeliM. Cell cycle related long non-coding RNAs as the critical regulators of breast cancer progression and metastasis.Biol. Res.2023561110.1186/s40659‑022‑00411‑4 36597150
    [Google Scholar]
  31. DongreA. WeinbergR.A. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer.Nat. Rev. Mol. Cell Biol.2019202698410.1038/s41580‑018‑0080‑4 30459476
    [Google Scholar]
  32. BhandariA. ZhengC. SindanN. SindanN. QuanR. XiaE. ThapaY. TamangD. WangO. YeX. HuangD. COPB2 is up‐regulated in breast cancer and plays a vital role in the metastasis via N‐cadherin and Vimentin.J. Cell. Mol. Med.20192385235524510.1111/jcmm.14398 31119859
    [Google Scholar]
  33. ZhangC. LiuX. JinS. ChenY. GuoR. Ferroptosis in cancer therapy: A novel approach to reversing drug resistance.Mol. Cancer20222114710.1186/s12943‑022‑01530‑y 35151318
    [Google Scholar]
  34. GaoM. LaiK. DengY. LuZ. SongC. WangW. XuC. LiN. GengQ. Eriocitrin inhibits epithelial-mesenchymal transformation (EMT) in lung adenocarcinoma cells via triggering ferroptosis.Aging (Albany NY)20231519100891010410.18632/aging.205049 37787987
    [Google Scholar]
  35. WangC. QiC. LiuM. WangL. ChengG. LiL. XingY. ZhaoX. LiuJ. Protective effects of agrimonolide on hypoxia‐induced H9c2 cell injury by maintaining mitochondrial homeostasis.J. Cell. Biochem.2022123230632110.1002/jcb.30169 34724244
    [Google Scholar]
  36. XiangM. LiR. ZhangZ. SongX. Advances in the research of the regulation of chinese traditional medicine monomer and its derivatives on autophagy in non-small cell lung cancer.Zhongguo Fei Ai Za Zhi2017203205212 28302224
    [Google Scholar]
  37. ÇelikF ŞimşekS Parasite and cancer relationship.Turkiye parazitolojii dergisi202246215016210.4274/tpd.galenos.2022.30974 35604195
    [Google Scholar]
  38. DuffD. LongA. Roles for RACK1 in cancer cell migration and invasion.Cell. Signal.20173525025510.1016/j.cellsig.2017.03.005 28336233
    [Google Scholar]
  39. LeiG. ZhuangL. GanB. Targeting ferroptosis as a vulnerability in cancer.Nat. Rev. Cancer202222738139610.1038/s41568‑022‑00459‑0 35338310
    [Google Scholar]
  40. StockwellB.R. Friedmann AngeliJ.P. BayirH. BushA.I. ConradM. DixonS.J. FuldaS. GascónS. HatziosS.K. KaganV.E. NoelK. JiangX. LinkermannA. MurphyM.E. OverholtzerM. OyagiA. PagnussatG.C. ParkJ. RanQ. RosenfeldC.S. SalnikowK. TangD. TortiF.M. TortiS.V. ToyokuniS. WoerpelK.A. ZhangD.D. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease.Cell2017171227328510.1016/j.cell.2017.09.021 28985560
    [Google Scholar]
  41. SuY. ZhaoB. ZhouL. ZhangZ. ShenY. LvH. AlQudsyL.H.H. ShangP. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs.Cancer Lett.202048312713610.1016/j.canlet.2020.02.015 32067993
    [Google Scholar]
  42. TangX. DingH. LiangM. ChenX. YanY. WanN. ChenQ. ZhangJ. CaoJ. Curcumin induces ferroptosis in non‐small‐cell lung cancer via activating autophagy.Thorac. Cancer20211281219123010.1111/1759‑7714.13904 33656766
    [Google Scholar]
  43. JiaqiL. SiqingH. qin, W.; di, Z.; bei, Z.; jialin, Y. Andrographolide promoted ferroptosis to repress the development of non-small cell lung cancer through activation of the mitochondrial dysfunction.Phytomedicine202310915460110.1016/j.phymed.2022.154601 36610134
    [Google Scholar]
  44. HuangH LiuJ WuH LiuF ZhouXJP Ferroptosis-associated gene SLC7A11 is upregulated in NSCLC and correlated with patient’s poor prognosis: An integrated bioinformatics analysis.Pteridines202132110611610.1515/pteridines‑2020‑0034
    [Google Scholar]
  45. LiuC.Y. LiuC.C. LiA.F.Y. HsuT.W. LinJ.H. HungS.C. HsuH.S. Glutathione peroxidase 4 expression predicts poor overall survival in patients with resected lung adenocarcinoma.Sci. Rep.20221212046210.1038/s41598‑022‑25019‑2 36443446
    [Google Scholar]
  46. HuangS. mTOR signaling in metabolism and cancer.Cells2020910227810.3390/cells9102278 33065976
    [Google Scholar]
  47. LiH. LinJ. YangF. DengJ. LaiJ. ZengJ. ZouW. JiangN. HuangQ. LiH. LiuJ. LiM. ZhongZ. WuJ. Sanguisorba officinalis L. suppresses non-small cell lung cancer via downregulating the PI3K/AKT/mTOR signaling pathway based on network pharmacology and experimental investigation.Front. Pharmacol.202213105480310.3389/fphar.2022.1054803 36506573
    [Google Scholar]
  48. NiJ. ChenK. ZhangJ. ZhangX. Inhibition of GPX4 or mTOR overcomes resistance to Lapatinib via promoting ferroptosis in NSCLC cells.Biochem. Biophys. Res. Commun.202156715416010.1016/j.bbrc.2021.06.051 34157442
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206305421240715042502
Loading
/content/journals/acamc/10.2174/0118715206305421240715042502
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test