Skip to content
2000
Volume 24, Issue 18
  • ISSN: 1871-5206
  • E-ISSN:

Abstract

Background

Angiogenesis is a process that many tumors depend on for growth, development, and metastasis. Vascular endothelial growth factor (VEGF) is one of the major players in tumor angiogenesis in several tumor types, including melanoma. VEGF inhibition is achieved by bevacizumab, a humanized monoclonal antibody that binds with high affinity to VEGF and prevents its function. In order to successfully enable VEGF expression imaging in a murine melanoma model, we previously labeled bevacizumab with [99mTc]Tc. We observed that this was feasible, but it had prolonged blood circulation and delayed tumor uptake.

Objective

The aim of this study was to develop a radiolabeled Fab bevacizumab fragment, [99mTc]Tc-HYNIC-Fab(bevacizumab), for non-invasive VEGF expression molecular imaging.

Methods

Flow cytometry was used to examine VEGF presence in the murine melanoma cell line (B16-F10). Bevacizumab was digested with papain for six hours at 37°C to produce Fab(bevacizumab), which was then conjugated to NHS-HYNIC-Tfa for radiolabeling with [99mTc]Tc. Stability and binding affinity assays were also evaluated. Biodistribution and single photon emission computed tomography/computed tomography (SPECT/CT) were performed at 1, 3, and 6 h (n = 4) after injection of [99mTc]Tc-HYNIC-Fab(Bevacizumab) in normal and B16-F10 tumor-bearing C57Bl/6J mice.

Results

Using flow cytometry, it was shown that the B16-F10 murine melanoma cell line has intracellular VEGF expression. Papain incubation resulted in the complete digestion of bevacizumab with good purity and homogeneity. The radiolabeling yield of [99mTc]Tc-HYNIC-Fab(bevacizumab) was 85.00 ± 6.06%, with a specific activity of 291.87 ± 18.84 MBq/mg (n=3), showing stability. Binding assays demonstrated significant intracellular VEGF expression. Fast blood clearance and high kidney and tumor uptake were observed in biodistribution and SPECT/CT studies.

Conclusions

We present the development and evaluation of [99mTc]Tc-HYNIC-Fab(bevacizumab), a novel molecular VEGF expression imaging agent that may be used for precision medicine in melanoma and potentially in other VEGF-expressing tumors.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206294297240805073550
2024-11-01
2024-11-29
Loading full text...

Full text loading...

References

  1. EddyK. ChenS. Overcoming immune evasion in melanoma.Int. J. Mol. Sci.20202123898410.3390/ijms21238984 33256089
    [Google Scholar]
  2. FilippiL. BrunoG. DomazetovicV. FavreC. CalvaniM. Current therapies and new targets to fight melanoma: A promising role for the β3-Adrenoreceptor.Cancers (Basel)20201261415141510.3390/cancers12061415 32486190
    [Google Scholar]
  3. LiZ. FangY. ChenH. ZhangT. YinX. ManJ. YangX. LuM. Spatiotemporal trends of the global burden of melanoma in 204 countries and territories from 1990 to 2019: Results from the 2019 global burden of disease study.Neoplasia2022241122110.1016/j.neo.2021.11.013 34872041
    [Google Scholar]
  4. WoutersM.W. MichielinO. BastiaannetE. BeishonM. CatalanoO. del MarmolV. Delgado-BoltonR. DendaleR. TrillM.D. FerrariA. ForseaA.M. KreckelH. LöveyJ. LuytenG. MassiD. MohrP. OberstS. PereiraP. PrataJ.P.P. RutkowskiP. SaartoT. ShethS. Spurrier-BernardG. VuoristoM.S. CostaA. NarediP. ECCO essential requirements for quality cancer care: Melanoma.Crit. Rev. Oncol. Hematol.201812216417810.1016/j.critrevonc.2017.12.020 29458785
    [Google Scholar]
  5. MucientesR.J. CardonaA.J. BoltonR. IzarduyP.L. SPECT-CT in sentinel node detection in patients with melanoma.Rev. Esp. Med. Nucl.200928522923410.1016/j.remn.2009.03.002 19922839
    [Google Scholar]
  6. MangasL.M. RomeroR.L. MendozaM.A. GarcíaM.I. VillanuevaT.A. GarrastachuZ.P. BoulvardC.X. LopciE. RamírezL.R. DelgadoB.R.C. [18F] FDG PET/CT in the Evaluation of melanoma patients treated with immunotherapy.Diagnostics (Basel)202313597810.3390/diagnostics13050978 36900122
    [Google Scholar]
  7. RamelyteE. SchindlerS.A. DummerR. The safety of anti PD-1 therapeutics for the treatment of melanoma.Expert Opin. Drug Saf.2017161415310.1080/14740338.2016.1248402 27737598
    [Google Scholar]
  8. XiaoR. MansourA.G. HuangW. ChrislipL.A. WilkinsR.K. QueenN.J. YoussefY. MaoH.C. CaligiuriM.A. CaoL. Adipocytes: A novel target for IL-15/IL-15Rα cancer gene therapy.Mol. Ther.201927592293210.1016/j.ymthe.2019.02.011 30833178
    [Google Scholar]
  9. GoldingerS.M. Buder-BakhayaK. LoS.N. ForschnerA. McKeanM. ZimmerL. KhooC. DummerR. ErogluZ. BuchbinderE.I. AsciertoP.A. GutzmerR. RozemanE.A. HoellerC. JohnsonD.B. GesierichA. KölblingerP. BennannouneN. CohenJ.V. KählerK.C. WilsonM.A. CebonJ. AtkinsonV. SmithJ.L. MichielinO. LongG.V. HasselJ.C. WeideB. HayduL.E. SchadendorfD. McArthurG. OttP.A. BlankC. RobertC. SullivanR. HauschildA. CarlinoM.S. GarbeC. DaviesM.A. MenziesA.M. Chemotherapy after immune checkpoint inhibitor failure in metastatic melanoma: A retrospective multicentre analysis.Eur. J. Cancer2022162223310.1016/j.ejca.2021.11.022 34952480
    [Google Scholar]
  10. KooH.Y. KumeT. FoxC1-dependent regulation of vascular endothelial growth factor signaling in corneal avascularity.Trends Cardiovasc. Med.20132311410.1016/j.tcm.2012.08.002 22939989
    [Google Scholar]
  11. StraumeO. SalvesenH.B. AkslenL.A. Angiogenesis is prognostically important in vertical growth phase melanomas.Int. J. Oncol.199915359559910.3892/ijo.15.3.595 10427146
    [Google Scholar]
  12. SobierajskaK. CiszewskiW.M. Sacewicz-HofmanI. NiewiarowskaJ. Endothelial cells in the tumor microenvironment.Adv Exp. Med. Biol.20201234718610.1007/978‑3‑030‑37184‑5_6
    [Google Scholar]
  13. SrivastavaA. LaidlerP. DaviesR.P. HorganK. HughesL.E. The prognostic significance of tumor vascularity in intermediate-thickness (0.76-4.0 mm thick) skin melanoma. A quantitative histologic study.Am. J. Pathol.19881332419423 3189515
    [Google Scholar]
  14. RibattiD. AnneseT. LongoV. Angiogenesis and melanoma.Cancers (Basel)20102111413210.3390/cancers2010114 24281035
    [Google Scholar]
  15. HalderS.K. KantR. MilnerR. Chronic mild hypoxia promotes profound vascular remodeling in spinal cord blood vessels, preferentially in white matter, via an α5β1 integrin-mediated mechanism.Angiogenesis201821225126610.1007/s10456‑017‑9593‑2 29299782
    [Google Scholar]
  16. WangJ.C. LiX.X. SunX. LiG.Y. SunJ.L. YeY.P. CongL.L. LiW.M. LuS.Y. FengJ. LiuP.J. Activation of AMPK by simvastatin inhibited breast tumor angiogenesis via impeding HIF ‐1α‐induced pro‐angiogenic factor.Cancer Sci.201810951627163710.1111/cas.13570 29532562
    [Google Scholar]
  17. LucianòA.M. Pérez-OlivaA.B. MuleroV. Del BufaloD. Bcl-xL: A focus on melanoma pathobiology.Int. J. Mol. Sci.2021225277710.3390/ijms22052777 33803452
    [Google Scholar]
  18. ParmarD. ApteM. Angiopoietin inhibitors: A review on targeting tumor angiogenesis.Eur. J. Pharmacol.202189917402110.1016/j.ejphar.2021.174021 33741382
    [Google Scholar]
  19. WuZ. BianY. ChuT. WangY. ManS. SongY. WangZ. The role of angiogenesis in melanoma: Clinical treatments and future expectations.Front. Pharmacol.202213102864710.3389/fphar.2022.1028647 36588679
    [Google Scholar]
  20. PanditaA. EkstrandM. BjurstenS. ZhaoZ. FogelstrandP. Le GalK. NyL. BergoM.O. KarlssonJ. NilssonJ.A. AkyürekL.M. LevinM.C. BorénJ. EwaldA.J. MostovK.E. LevinM. Intussusceptive angiogenesis in human metastatic malignant melanoma.Am. J. Pathol.2021191112023203810.1016/j.ajpath.2021.07.009 34400131
    [Google Scholar]
  21. Pérez-GutiérrezL. FerraraN. Biology and therapeutic targeting of vascular endothelial growth factor A.Nat. Rev. Mol. Cell Biol.2023241181683410.1038/s41580‑023‑00631‑w 37491579
    [Google Scholar]
  22. KoizumiK. ShintaniT. HayashidoY. HamadaA. HigakiM. YoshiokaY. SakamotoA. YanamotoS. OkamotoT. VEGF-A promotes the motility of human melanoma cells through the VEGFR1–PI3K/Akt signaling pathway.In Vitro Cell. Dev. Biol. Anim.202258875877010.1007/s11626‑022‑00717‑3 35997849
    [Google Scholar]
  23. DeschA. StrozykE.A. BauerA.T. HuckV. NiemeyerV. WielandT. SchneiderS.W. Highly invasive melanoma cells activate the vascular endothelium via an MMP-2/integrin αvβ5-induced secretion of VEGF-A.Am. J. Pathol.2012181269370510.1016/j.ajpath.2012.04.012 22659470
    [Google Scholar]
  24. ShibuyaM. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies.Genes Cancer20112121097110510.1177/1947601911423031 22866201
    [Google Scholar]
  25. FerraraN. AdamisA.P. Ten years of anti-vascular endothelial growth factor therapy.Nat. Rev. Drug Discov.201615638540310.1038/nrd.2015.17 26775688
    [Google Scholar]
  26. WoolardJ. BevanH.S. HarperS.J. BatesD.O. Molecular diversity of VEGF-A as a regulator of its biological activity.Microcirculation200916757259210.1080/10739680902997333 19521900
    [Google Scholar]
  27. KochS. Claesson-WelshL. Signal transduction by vascular endothelial growth factor receptors.Cold Spring Harb. Perspect. Med.201227a00650210.1101/cshperspect.a006502 22762016
    [Google Scholar]
  28. WarrenB.A. ShubikP. The growth of the blood supply to melanoma transplants in the hamster cheek pouch.Lab. Invest.1966152464478 5932611
    [Google Scholar]
  29. LiuY.X. XuB.W. NiuX.D. ChenY.J. FuX.Q. WangX.Q. YinC.L. ChouJ.Y. LiJ.K. WuJ.Y. BaiJ.X. WuY. LiS.M. YuZ.L. Inhibition of Src/STAT3 signaling-mediated angiogenesis is involved in the anti-melanoma effects of dioscin.Pharmacol. Res.202217510598310.1016/j.phrs.2021.105983 34822972
    [Google Scholar]
  30. HuF. FongK.O. CheungM.P.L. LiuJ.A. LiangR. LiT.W. SharmaR. IpP.P.C. YangX. CheungM. DEPDC1B promotes melanoma angiogenesis and metastasis through sequestration of Ubiquitin ligase CDC16 to stabilize secreted SCUBE3.Adv. Sci. (Weinh.)2022910210522610.1002/advs.202105226 35088579
    [Google Scholar]
  31. WohlfeilS.A. HäfeleV. DietschB. WellerC. StichtC. JauchA.S. WinklerM. SchmidC.D. IrkensA.L. OlsavszkyA. SchledzewskiK. Reiners-KochP.S. GoerdtS. GéraudC. Angiogenic and molecular diversity determine hepatic melanoma metastasis and response to anti-angiogenic treatment.J. Transl. Med.20222016210.1186/s12967‑022‑03255‑4 35109875
    [Google Scholar]
  32. PrestaL.G. ChenH. O’ConnorS.J. ChisholmV. MengY.G. KrummenL. WinklerM. FerraraN. Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders.Cancer Res.1997572045934599 9377574
    [Google Scholar]
  33. HurwitzH. FehrenbacherL. NovotnyW. CartwrightT. HainsworthJ. HeimW. BerlinJ. BaronA. GriffingS. HolmgrenE. FerraraN. FyfeG. RogersB. RossR. KabbinavarF. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer.N. Engl. J. Med.2004350232335234210.1056/NEJMoa032691 15175435
    [Google Scholar]
  34. GerberH.P. FerraraN. Pharmacology and pharmacodynamics of bevacizumab as monotherapy or in combination with cytotoxic therapy in preclinical studies.Cancer Res.200565367168010.1158/0008‑5472.671.65.3 15705858
    [Google Scholar]
  35. KangL. LiC. RosenkransZ.T. EngleJ.W. WangR. JiangD. XuX. CaiW. Noninvasive evaluation of CD20 expression using 64Cu-Labeled F(ab′)2 fragments of Obinutuzumab in lymphoma.J. Nucl. Med.202162337237810.2967/jnumed.120.246595 32826320
    [Google Scholar]
  36. Gmeiner StoparT. FettichJ. ZverS. Mlinaric-RascanI. HojkerS. SocanA. PeitlP.K. MatherS. 99mTc-labelled rituximab, a new non-Hodgkin’s lymphoma imaging agent: First clinical experience.Nucl. Med. Commun.200829121059106510.1097/MNM.0b013e3283134d6e 18987526
    [Google Scholar]
  37. CamachoX. MachadoC.L. GarcíaM.F. GambiniJ.P. BancheroA. FernándezM. OddoneN. BertoliniZ.D. RosalC. BuchpiguelC.A. ChammasR. RivaE. CabralP. Technetium-99m- or Cy7-Labeled rituximab as an imaging agent for non-hodgkin lymphoma.Oncology201792422924210.1159/000452419 28196364
    [Google Scholar]
  38. CamachoX. PerroniC. MachadoC.L. de Godoi CarneiroC. de Souza JunqueiraM. FariaD. GarcíaM.F. FernándezM. OddoneN. BenechJ. BuchpiguelC.A. CerecettoH. ChammasR. RivaE. CabralP. GambiniJ.P. 99mTechnetium- or Cy7-labeled fab(Tocilizumab) as potential multiple myeloma imaging agents.Anticancer. Agents Med. Chem.202121141883189310.2174/1871520621999210104181238 33397271
    [Google Scholar]
  39. CamachoX. GarcíaM.F. CalzadaV. FernándezM. ChabalgoityJ.A. MorenoM. Barbosa de AguiarR. AlonsoO. GambiniJ.P. ChammasR. CabralP. [(99m)Tc(CO)(3)]-radiolabeled bevacizumab: in vitro and in vivo evaluation in a melanoma model.Oncology201384420020910.1159/000338961 23328435
    [Google Scholar]
  40. XimenaCamacho VictoriaCalzada MarceloFernandez OmarAlonso RogerChammas WilliamsPorcal PabloCabral MachadoC.M.L. ChammasR. PorcalW. CabralP. 99mTc-labeled bevacizumab via HYNIC for imaging of melanoma.J. Anal. Oncol.20143110.6000/1927‑7229.2014.03.01.9
    [Google Scholar]
  41. CamachoX. MachadoC.L. GarcíaM.F. FernádezM. OddoneN. BenechJ. GambiniJ.P. CerecettoH. ChammasR. CabralP. RivaE. Tocilizumab labeling with 99mTechnetium via HYNIC as a molecular diagnostic agent for multiple myeloma.Anticancer. Agents Med. Chem.20171791267127710.2174/1871520617666170213144917 28270081
    [Google Scholar]
  42. CamachoX. FernandaG.M. CalzadaV. FernándezM. PorcalW. AlonsoO. Pablo GambiniJ. CabralP. Synthesis and evaluation of (99m)Tc chelate-conjugated bevacizumab.Curr. Radiopharm.201361121910.2174/1874471011306010003 23035645
    [Google Scholar]
  43. CamachoX. PerroniC. CarneiroC.G. JunqueiraM.S. MachadoC.L. FariaD. Molecular imaging of VEGF expression in multiple myeloma and non-hodgkin lymphoma.J. Mol. Biol. Mol. Imaging2022711033
    [Google Scholar]
  44. GarcíaM.F. CalzadaV. CamachoX. GoicocheaE. GambiniJ. QuinnT. PorcalW. CabralP. Microwave-assisted synthesis of HYNIC protected analogue for 99mTc labeled antibody.Curr. Radiopharm.201472849010.2174/1874471007666141128160449 25429778
    [Google Scholar]
  45. GarciaM.F. CamachoX. CalzadaV. FernandezM. PorcalW. AlonsoO. GambiniJ.P. CabralP. Synthesis of 99mTc-nimotuzumab with tricarbonyl ion: In vitro and in vivo studies.Curr. Radiopharm.201251596410.2174/1874471011205010059
    [Google Scholar]
  46. MartiniovaL. ZielinskiR.J. LinM. DePalatisL. RavizziniG.C. The role of radiolabeled monoclonal antibodies in cancer imaging and ADC treatment.Cancer J.202228644645310.1097/PPO.0000000000000625 36383907
    [Google Scholar]
  47. ParakhS. LeeS.T. GanH.K. ScottA.M. Radiolabeled antibodies for cancer imaging and therapy.Cancers (Basel)2022146145410.3390/cancers14061454 35326605
    [Google Scholar]
  48. SchmidtM.M. WittrupK.D. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting.Mol. Cancer Ther.20098102861287110.1158/1535‑7163.MCT‑09‑0195 19825804
    [Google Scholar]
  49. DewulfJ. HrynchakI. GeudensS. PintelonI. VangestelC. SerenoJ. van DamP.A. AbrunhosaA.J. ElvasF. Van den WyngaertT. Improved characteristics of RANKL Immuno-PET imaging using radiolabeled antibody fab fragments.Pharmaceutics202214593993910.3390/pharmaceutics14050939 35631525
    [Google Scholar]
  50. SumanS.K. KameswaranM. MalliaM. MittalS. DashA. Synthesis and preliminary evaluation of 99mTc-Hynic-fragments [F(ab’)2 and F(ab’)] of Rituximab as radioimmunoscintigraphic agents for patients with Non-Hodgkin’s lymphoma.Appl. Radiat. Isot.201915310880810.1016/j.apradiso.2019.108808 31325798
    [Google Scholar]
  51. XenakiK.T. OliveiraS. van Bergen en Henegouwen, P.M.P. Antibody or antibody fragments: Implications for molecular imaging and targeted therapy of solid tumors.Front. Immunol.20178128710.3389/fimmu.2017.01287 29075266
    [Google Scholar]
  52. ChakravartyR. RohraN. JadhavS. SarmaH.D. JainR. ChakrabortyS. Biochemical separation of Cetuximab-Fab from papain-digested antibody fragments and radiolabeling with 64Cu for potential use in radioimmunotheranostics.Appl. Radiat. Isot.202319611079511079510.1016/j.apradiso.2023.110795 37004293
    [Google Scholar]
  53. ReillyR.M. SandhuJ. Alvarez-DiezT.M. GallingerS. KirshJ. SternH. Problems of delivery of monoclonal antibodies. Pharmaceutical and pharmacokinetic solutions.Clin. Pharmacokinet.199528212614210.2165/00003088‑199528020‑00004 7736688
    [Google Scholar]
  54. KholodenkoR.V. KalinovskyD.V. DoroninI.I. PonomarevE.D. KholodenkoI.V. Antibody fragments as potential biopharmaceuticals for cancer therapy: Success and limitations.Curr. Med. Chem.201926339642610.2174/0929867324666170817152554 28820071
    [Google Scholar]
  55. BatesA. PowerC.A. David vs. Goliath: The structure, function, and clinical prospects of antibody fragments.Antibodies (Basel)2019822810.3390/antib8020028 31544834
    [Google Scholar]
  56. GillS.C. von HippelP.H. Calculation of protein extinction coefficients from amino acid sequence data.Anal. Biochem.1989182231932610.1016/0003‑2697(89)90602‑7 2610349
    [Google Scholar]
  57. TangY. ScollardD. ChenP. WangJ. HollowayC. ReillyR.M. Imaging of HER2/neu expression in BT-474 human breast cancer xenografts in athymic mice using [99mTc]-HYNIC-trastuzumab (Herceptin) Fab fragments.Nucl. Med. Commun.200526542743210.1097/00006231‑200505000‑00006 15838425
    [Google Scholar]
  58. WisdomG.B. Conjugation of antibodies to fluorescein or rhodamine.Methods Mol. Biol.200529513113410.1385/1‑59259‑873‑0:131 15596893
    [Google Scholar]
  59. OlbrytM. JarząbM. Jazowiecka-RakusJ. SimekK. SzalaS. SochanikA. Gene expression profile of B 16(F10) murine melanoma cells exposed to hypoxic conditions in vitro.Gene Expr.200613319120310.3727/000000006783991818 17193925
    [Google Scholar]
  60. TassanoM. CamachoX. FreireT. PerroniC. da CostaV. CabreraM. GarcíaM.F. FernándezM. GambiniJ.P. CabralP. OsinagaE. Enhanced tumor targeting of radiolabeled mouse/human chimeric anti-tn antibody in losartan-treated mice bearing tn-expressing lung tumors.Cancer Biother. Radiopharm.202439533734810.1089/cbr.2023.0138 38215243
    [Google Scholar]
  61. ArnoldM. SinghD. LaversanneM. VignatJ. VaccarellaS. MeheusF. CustA.E. de VriesE. WhitemanD.C. BrayF. Global burden of cutaneous melanoma in 2020 and projections to 2040.JAMA Dermatol.2022158549550310.1001/jamadermatol.2022.0160 35353115
    [Google Scholar]
  62. RajabiP. NeshatA. MokhtariM. RajabiM. EftekhariM. TavakoliP. The role of VEGF in melanoma progression.J. Res. Med. Sci.2012176534539 23626629
    [Google Scholar]
  63. Bogusławska-DuchJ. DucherM. MałeckiM. Resistance of melanoma cells to anticancer treatment: A role of vascular endothelial growth factor.Postepy Dermatol. Alergol.2020371111810.5114/ada.2020.93378 32467677
    [Google Scholar]
  64. WeiW. EhlerdingE.B. LanX. LuoQ. CaiW. PET and SPECT imaging of melanoma: The state of the art.Eur. J. Nucl. Med. Mol. Imaging201845113215010.1007/s00259‑017‑3839‑5 29085965
    [Google Scholar]
  65. ChakravartyR. GoelS. ValdovinosH.F. HernandezR. HongH. NicklesR.J. CaiW. Matching the decay half-life with the biological half-life: ImmunoPET imaging with (44)Sc-labeled cetuximab Fab fragment.Bioconjug. Chem.201425122197220410.1021/bc500415x 25389697
    [Google Scholar]
  66. AbramsM.J. JuweidM.E. tenKateC.I. SchwartzD. HauserM.M. GaulF.E. FuccelloA. RubinR.H. StraussH.W. FischmanA.J. Technetium-99m-human polyclonal IgG radiolabeled via the hydrazino nicotinamide derivative for imaging focal sites of infection in rats.J. Nucl. Med.1990311220222028 2266401
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206294297240805073550
Loading
/content/journals/acamc/10.2174/0118715206294297240805073550
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): [99mTc]Tc-labeled Fab(bevacizumab); flow cytometry; melanoma; molecular imaging; tumor; VEGF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test