Skip to content
2000
Volume 24, Issue 6
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Hyperoside is a flavonol glycoside isolated from L. that has inhibitory effects on cancer cells; however, its effects on prostate cancer (PCa) remain unclear. Therefore, we studied the anti-PCa effects of hyperoside and its underlying mechanisms and .

Aim

This study aimed to explore the mechanism of hyperoside in anti-PCa.

Methods

3-(4,5-Dimethyl-2-Thiazolyl)-2,5-Diphenyl Tetrazolium Bromide (MTT), transwell, and flow cytometry assays were used to detect PCa cell growth, invasion, and cell apoptosis. Immunoblot analysis, immunofluorescence, immunoprecipitation, and quantitative real-time PCR (qRT-PCR) were used to analyze the antitumor mechanism of hyperoside.

Results

Hyperoside inhibited PCa cell growth, invasion, and cell cycle and induced cell apoptosis. Furthermore, RING finger protein 8 (RNF8), an E3 ligase that assembles K63 polyubiquitination chains, was predicted to be a direct target of hyperoside and was downregulated by hyperoside. Downregulation of RNF8 by hyperoside impeded the nuclear translocation of β-catenin and disrupted the Wnt/β-catenin pathway, which reduced the expression of the target genes and programmed death ligand 1 . Decreased PD-L1 levels contributed to induced immunity in Jurkat cells . Finally, studies demonstrated that hyperoside significantly reduced tumor size, inhibited PD-L1 and RNF8 expression, and induced apoptosis in tumor tissues of a subcutaneous mouse model.

Conclusion

Hyperoside exerts its anti-PCa effect by reducing RNF8 protein, inhibiting nuclear translocation of β-catenin, and disrupting the Wnt/β-catenin pathway, in turn reducing the expression of PD-L1 and improving Jurkat cell immunity.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206289246240110044931
2024-04-01
2025-04-23
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.2166033538338
    [Google Scholar]
  2. SandhuS. MooreC.M. ChiongE. BeltranH. BristowR.G. WilliamsS.G. Prostate cancer.Lancet2021398103051075109010.1016/S0140‑6736(21)00950‑834370973
    [Google Scholar]
  3. YuJ. GritsinaG. GaoW-Q. Transcriptional repression by androgen receptor: Roles in castration-resistant prostate cancer.Asian J. Androl.201921321522310.4103/aja.aja_19_1930950412
    [Google Scholar]
  4. PowersE. KarachaliouG.S. KaoC. HarrisonM.R. HoimesC.J. GeorgeD.J. ArmstrongA.J. ZhangT. Novel therapies are changing treatment paradigms in metastatic prostate cancer.J. Hematol. Oncol.202013114410.1186/s13045‑020‑00978‑z33115529
    [Google Scholar]
  5. ChaH.R. LeeJ.H. PonnazhaganS. Revisiting immunotherapy: A focus on prostate cancer.Cancer Res.20208081615162310.1158/0008‑5472.CAN‑19‑294832066566
    [Google Scholar]
  6. ClapsM. MennittoA. GuadalupiV. SepeP. StellatoM. ZattarinE. GillessenS.S. SternbergC.N. BerrutiA. De BraudF.G.M. VerzoniE. ProcopioG. Immune-checkpoint inhibitors and metastatic prostate cancer therapy: Learning by making mistakes.Cancer Treat. Rev.20208810205710.1016/j.ctrv.2020.10205732574991
    [Google Scholar]
  7. NittiM. PirasS. Lisa FurfaroA. BrondoloL. Maria MarinariU. Adelaide PronzatoM. Neuroblastoma cell response to oxidative stress is impaired by retinoic acid-induced differentiation: Role of HO-1.Free Radic. Biol. Med.2016100S106S10710.1016/j.freeradbiomed.2016.10.272
    [Google Scholar]
  8. HuJ. WuX. YangC. RashidK. MaC. HuM. DingQ. JiangH. Anticancer effect of icaritin on prostate cancer via regulating miR‐381‐3p and its target gene UBE2C.Cancer Med.20198187833784510.1002/cam4.263031646760
    [Google Scholar]
  9. DrakeC.G. Prostate cancer as a model for tumour immunotherapy.Nat. Rev. Immunol.201010858059310.1038/nri281720651745
    [Google Scholar]
  10. TopalianS.L. DrakeC.G. PardollD.M. Targeting the PD-1/B7-H1(PD-L1) pathway to activate anti-tumor immunity.Curr. Opin. Immunol.201224220721210.1016/j.coi.2011.12.00922236695
    [Google Scholar]
  11. KotanidesH. LiY. MalabungaM. CarpenitoC. EastmanS.W. ShenY. WangG. InigoI. SurguladzeD. PennelloA.L. PersaudK. HindiS. TopperM. ChenX. ZhangY. BulaonD.K. BaileyT. LaoY. HanB. TorgersonS. ChinD. SonyiA. HaidarJ.N. NovosiadlyR.D. MoxhamC.M. PlowmanG.D. LudwigD.L. KalosM. Bispecific targeting of PD-1 and PD-L1 enhances T-cell activation and antitumor immunity.Cancer Immunol. Res.20208101300131010.1158/2326‑6066.CIR‑20‑030432873605
    [Google Scholar]
  12. JiangX. WangJ. DengX. XiongF. GeJ. XiangB. WuX. MaJ. ZhouM. LiX. LiY. LiG. XiongW. GuoC. ZengZ. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape.Mol. Cancer20191811010.1186/s12943‑018‑0928‑430646912
    [Google Scholar]
  13. XuY. SongG. XieS. JiangW. ChenX. ChuM. HuX. WangZ. The roles of PD-1/PD-L1 in the prognosis and immunotherapy of prostate cancer.Mol. Ther.20212961958196910.1016/j.ymthe.2021.04.02933932597
    [Google Scholar]
  14. KirG. CecikogluG.E. OlgunZ.C. KazanH.O. YildirimA. PTEN loss and PD-L1 expression of different histological patterns of prostate cancer.Pathol. Res. Pract.202222915373810.1016/j.prp.2021.15373834922209
    [Google Scholar]
  15. GevenslebenH. DietrichD. GolletzC. SteinerS. JungM. ThieslerT. MajoresM. SteinJ. UhlB. MüllerS. EllingerJ. StephanC. JungK. BrossartP. KristiansenG. The immune checkpoint regulator PD-L1 is highly expressed in aggressive primary prostate cancer.Clin. Cancer Res.20162281969197710.1158/1078‑0432.CCR‑15‑204226573597
    [Google Scholar]
  16. SommerU. EbersbachC. BeierA.M.K. BarettonG.B. ThomasC. BorkowetzA. ErbH.H.H. Influence of androgen deprivation therapy on the PD-L1 expression and immune activity in prostate cancer tissue.Front. Mol. Biosci.2022987835310.3389/fmolb.2022.87835335836932
    [Google Scholar]
  17. ZengL. LiL. ZengQ. DengY. YinL. LiaoL. Mitogenic activity of Artocarpus lingnanensis lectin and its apoptosis induction in Jurkat T cells.J. Nat. Med.201872374575610.1007/s11418‑018‑1212‑z29651698
    [Google Scholar]
  18. Da SilvaT. Oliveira-BritoP. GonçalvesT. VendruscoloP. Roque-BarreiraM. ArtinM. ArtinM mediates murine T cell activation and induces cell death in jurkat human leukemic T cells.Int. J. Mol. Sci.2017187140010.3390/ijms1807140028665310
    [Google Scholar]
  19. ChenJ. QinP. TaoZ. DingW. YaoY. XuW. YinD. TanS. Anticancer activity of methyl protodioscin against prostate cancer by modulation of cholesterol-associated MAPK signaling pathway via FOXO1 induction.Biol. Pharm. Bull.202346457458510.1248/bpb.b22‑0068237005301
    [Google Scholar]
  20. ZhouT. YiF. WangZ. GuoQ. LiuJ. BaiN. LiX. DongX. RenL. CaoL. SongX. The functions of DNA damage factor RNF8 in the pathogenesis and progression of cancer.Int. J. Biol. Sci.201915590991810.7150/ijbs.3197231182912
    [Google Scholar]
  21. YangY. ZhangW. LanP. Immune checkpoint and other receptor-ligand pairs modulating macrophages in cancer: Present and prospects.Cancers20221423596310.3390/cancers1423596336497444
    [Google Scholar]
  22. ZhouL. WuF. JinW. YanB. ChenX. HeY. YangW. DuW. ZhangQ. GuoY. YuanQ. DongX. YuW. ZhangJ. XiaoL. TongP. ShanL. EfferthT. Theabrownin inhibits cell cycle progression and tumor growth of lung carcinoma through c-myc-related mechanism.Front. Pharmacol.201787510.3389/fphar.2017.0007528289384
    [Google Scholar]
  23. CarrubbaA. LazzaraS. GiovinoA. RubertoG. NapoliE. Content variability of bioactive secondary metabolites in Hypericum perforatum L.Phytochem. Lett.202146717810.1016/j.phytol.2021.09.011
    [Google Scholar]
  24. XuS. ChenS. XiaW. SuiH. FuX. Hyperoside: A review of its structure, synthesis, pharmacology, pharmacokinetics and toxicity.Molecules2022279300910.3390/molecules2709300935566359
    [Google Scholar]
  25. ZouY. LuY. WeiD. Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro.J. Agric. Food Chem.200452165032503910.1021/jf049571r15291471
    [Google Scholar]
  26. XieQ. WenH. ZhangQ. ZhouW. LinX. XieD. LiuY. Inhibiting PI3K-AKt signaling pathway is involved in antitumor effects of ginsenoside Rg3 in lung cancer cell.Biomed. Pharmacother.201785162110.1016/j.biopha.2016.11.09627930981
    [Google Scholar]
  27. WangK. ZhangH. YuanL. LiX. CaiY. Potential implications of hyperoside on oxidative stress-induced human diseases: A comprehensive review.J. Inflamm. Res.20231645034526[https://doi.org/]
    [Google Scholar]
  28. SunJ. ZhengY. MamunM.A.A. LiX. ChenX. GaoY. Research progress of PD-1/PD-L1 immunotherapy in gastrointestinal tumors.Biomed. Pharmacother.202012911050410.1016/j.biopha.2020.11050432768978
    [Google Scholar]
  29. ZhaoL. ChenX. WuH. HeQ. DingL. YangB. Strategies to synergize PD-1/PD-L1 targeted cancer immunotherapies to enhance antitumor responses in ovarian cancer.Biochem. Pharmacol.202321511572410.1016/j.bcp.2023.11572437524205
    [Google Scholar]
  30. SunK. LuoJ. JingX. XiangW. GuoJ. YaoX. LiangS. GuoF. XuT. Hyperoside ameliorates the progression of osteoarthritis: An in vitro and in vivo study.Phytomedicine20218015338710.1016/j.phymed.2020.15338733130473
    [Google Scholar]
  31. JangS.A. ParkD.W. SohnE.H. LeeS.R. KangS.C. Hyperoside suppresses tumor necrosis factor α-mediated vascular inflammatory responses by downregulating mitogen-activated protein kinases and nuclear actor-κB signaling.Chem. Biol. Interact.2018294485510.1016/j.cbi.2018.08.01330125551
    [Google Scholar]
  32. KwonS.H. LeeS.R. ParkY.J. RaM. LeeY. PangC. KimK.H. Suppression of 6-hydroxydopamine-induced oxidative stress by hyperoside via activation of Nrf2/HO-1 signaling in dopaminergic neurons.Int. J. Mol. Sci.20192023583210.3390/ijms2023583231757050
    [Google Scholar]
  33. LeeS.H. LeeJ.Y. KwonY.I. JangH.D. Anti-osteoclastic activity of artemisia capillaris thunb. Extract depends upon attenuation of osteoclast differentiation and bone resorption-associated acidification due to chlorogenic acid, hyperoside, and scoparone.Int. J. Mol. Sci.201718232210.3390/ijms1802032228165389
    [Google Scholar]
  34. WangQ. WeiH.C. ZhouS.J. LiY. ZhengT.T. ZhouC.Z. WanX.H. Hyperoside: A review on its sources, biological activities, and molecular mechanisms.Phytother. Res.20223672779280210.1002/ptr.747835561084
    [Google Scholar]
  35. GuoW. YuH. ZhangL. ChenX. LiuY. WangY. ZhangY. Effect of hyperoside on cervical cancer cells and transcriptome analysis of differentially expressed genes.Cancer Cell Int.201919123510.1186/s12935‑019‑0953‑431516392
    [Google Scholar]
  36. QiuJ. ZhangT. ZhuX. YangC. WangY. ZhouN. JuB. ZhouT. DengG. QiuC. Hyperoside induces breast cancer cells apoptosis via ROS-mediated NF-kappaB signaling pathway.Int. J. Mol. Sci.201921113110.3390/ijms2101013131878204
    [Google Scholar]
  37. ChenD. WuY.X. QiuY. WanB. LiuG. ChenJ. LuM. PangQ. Hyperoside suppresses hypoxia-induced A549 survival and proliferation through ferrous accumulation via AMPK/HO-1 axis.Phytomedicine20206715313810.1016/j.phymed.2019.15313831881478
    [Google Scholar]
  38. PingM.H. Hyperin controls the development and therapy of gastric cancer via regulating Wnt/beta-catenin signaling.Cancer Manag. Res.202012117731178210.2147/CMAR.S27054433235505
    [Google Scholar]
  39. ZhangY. DongH. ZhangJ. ZhangL. Inhibitory effect of hyperoside isolated from Zanthoxylum bungeanum leaves on SW620 human colorectal cancer cells via induction of the p53 signaling pathway and apoptosis.Mol. Med. Rep.20171621125113210.3892/mmr.2017.671029067453
    [Google Scholar]
  40. BoukesG.J. van de VenterM. The apoptotic and autophagic properties of two natural occurring prodrugs, hyperoside and hypoxoside, against pancreatic cancer cell lines.Biomed. Pharmacother.20168361762610.1016/j.biopha.2016.07.02927459118
    [Google Scholar]
  41. ZhuX. JiM. HanY. GuoY. ZhuW. GaoF. YangX. ZhangC. PGRMC1-dependent autophagy by hyperoside induces apoptosis and sensitizes ovarian cancer cells to cisplatin treatment.Int. J. Oncol.201750383584610.3892/ijo.2017.387328197632
    [Google Scholar]
  42. LiuC. KuangJ. WangY. DuanT. MinL. LuC. ZhangT. ChenR. WuY. ZhuL. A functional reference map of the RNF8 interactome in cancer.Biol. Direct20221711710.1186/s13062‑022‑00331‑z35831895
    [Google Scholar]
  43. DingP. XuY. LiL. LvX. LiL. ChenJ. ZhouD. WangX. WangQ. ZhangW. LiaoT. JiQ.H. LeiQ.Y. HuW. Intracellular complement C5a/C5aR1 stabilizes β-catenin to promote colorectal tumorigenesis.Cell Rep.202239911085110.1016/j.celrep.2022.11085135649359
    [Google Scholar]
  44. MailandN. Bekker-JensenS. FaustrupH. MelanderF. BartekJ. LukasC. LukasJ. RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins.Cell2007131588790010.1016/j.cell.2007.09.04018001824
    [Google Scholar]
  45. RenL. ZhouT. WangY. WuY. XuH. LiuJ. DongX. YiF. GuoQ. WangZ. LiX. BaiN. GuoW. GuoM. JiangB. WuX. FengY. SongX. ZhangS. ZhaoY. CaoL. HanS. XingC. RNF8 induces β-catenin-mediated c-Myc expression and promotes colon cancer proliferation.Int. J. Biol. Sci.202016122051206210.7150/ijbs.4411932549753
    [Google Scholar]
  46. KuangJ. MinL. LiuC. ChenS. GaoC. MaJ. WuX. LiW. WuL. ZhuL. RNF8 promotes epithelial-mesenchymal transition in lung cancer cells via stabilization of slug.Mol. Cancer Res.202018111638164910.1158/1541‑7786.MCR‑19‑121132753472
    [Google Scholar]
  47. XuY. HuY. XuT. YanK. ZhangT. LiQ. ChangF. GuoX. PengJ. LiM. ZhaoM. ZhenH. XuL. ZhengD. LiL. ShaoG. RNF8-mediated regulation of Akt promotes lung cancer cell survival and resistance to DNA damage.Cell Rep.202137310985410.1016/j.celrep.2021.10985434686341
    [Google Scholar]
  48. KamaliA.N. BautistaJ.M. EisenhutM. HamedifarH. Immune checkpoints and cancer immunotherapies: Insights into newly potential receptors and ligands.Ther. Adv. Vaccines Immunother.2023112515135523119204310.1177/2515135523119204337662491
    [Google Scholar]
  49. ZhouT. WangS. SongX. LiuW. DongF. HuoY. ZouR. WangC. ZhangS. LiuW. SunG. LinL. ZengK. DongX. GuoQ. YiF. WangZ. LiX. JiangB. CaoL. ZhaoY. RNF8 up-regulates AR/ARV7 action to contribute to advanced prostate cancer progression.Cell Death Dis.202213435210.1038/s41419‑022‑04787‑935428760
    [Google Scholar]
  50. SunB. LiuY. HeD. LiJ. WangJ. WenW. HongM. Traditional Chinese medicines and their active ingredients sensitize cancer cells to TRAIL-induced apoptosis.J. Zhejiang Univ. Sci. B202122319020310.1631/jzus.B200049733719224
    [Google Scholar]
  51. ValnegriP. HuangJ. YamadaT. YangY. MejiaL.A. ChoH.Y. OldenborgA. BonniA. RNF8/UBC13 ubiquitin signaling suppresses synapse formation in the mammalian brain.Nat. Commun.201781127110.1038/s41467‑017‑01333‑629097665
    [Google Scholar]
  52. Murillo-GarzónV. KyptaR. WNT signalling in prostate cancer.Nat. Rev. Urol.2017141168369610.1038/nrurol.2017.14428895566
    [Google Scholar]
  53. SchneiderJ.A. LoganS.K. Revisiting the role of Wnt/β-catenin signaling in prostate cancer.Mol. Cell. Endocrinol2018462(PtA3810.1016/j.mce.2017.02.00828189566
    [Google Scholar]
  54. ZhuP.L. LiJ.K. JiangX.L. ZhangS.Q. ZhangZ. WangY. ZhangZ. ChenW.Q. YungK.K.L. A traditional prescription comprising Astragali radix and Schisandra chinensis Fructus induces apoptosis and protective autophagy in hepatocellular carcinoma cells.J. Ethnopharmacol.202331211654810.1016/j.jep.2023.11654837100264
    [Google Scholar]
  55. HeT.C. SparksA.B. RagoC. HermekingH. ZawelL. da CostaL.T. MorinP.J. VogelsteinB. KinzlerK.W. Identification of c-MYC as a target of the APC pathway.Science199828153821509151210.1126/science.281.5382.15099727977
    [Google Scholar]
  56. TetsuO. McCormick, F. β-Catenin regulates expression of cyclin D1 in colon carcinoma cells.Nature1999398672642242610.1038/1888410201372
    [Google Scholar]
  57. GanS. YeJ. LiJ. HuC. WangJ. XuD. PanX. ChuC. ChuJ. ZhangJ. ZhengJ. ZhangX. XuJ. ZhangH. QuF. CuiX. LRP11 activates β-catenin to induce PD-L1 expression in prostate cancer.J. Drug Target.202028550851510.1080/1061186X.2019.168771031865764
    [Google Scholar]
  58. PawelecG. BorowitzA. KrammerP.H. WernetP. Constitutive interleukin 2 production by the JURKAT human leukemic T cell line.Eur. J. Immunol.198212538739210.1002/eji.18301205066980126
    [Google Scholar]
  59. GholijaniN. GharagozlooM. KalantarF. RamezaniA. AmirghofranZ. Modulation of cytokine production and transcription factors activities in human jurkat T cells by thymol and carvacrol.Adv. Pharm. Bull.20155Suppl. 165366010.15171/apb.2015.08926793612
    [Google Scholar]
  60. WangB. TianT. KallandK.H. KeX. QuY. Targeting Wnt/β-catenin signaling for cancer immunotherapy.Trends Pharmacol. Sci.201839764865810.1016/j.tips.2018.03.00829678298
    [Google Scholar]
  61. YuF. YuC. LiF. ZuoY. WangY. YaoL. WuC. WangC. YeL. Wnt/β-catenin signaling in cancers and targeted therapies.Signal Transduct. Target. Ther.20216130710.1038/s41392‑021‑00701‑534456337
    [Google Scholar]
  62. ZhaoJ. BlayneyA. LiuX. GandyL. JinW. YanL. HaJ.H. CanningA.J. ConnellyM. YangC. LiuX. XiaoY. CosgroveM.S. SolmazS.R. ZhangY. BanD. ChenJ. LohS.N. WangC. EGCG binds intrinsically disordered N-terminal domain of p53 and disrupts p53-MDM2 interaction.Nat. Commun.202112198610.1038/s41467‑021‑21258‑533579943
    [Google Scholar]
  63. YaoF. ZhouZ. KimJ. HangQ. XiaoZ. TonB.N. ChangL. LiuN. ZengL. WangW. WangY. ZhangP. HuX. SuX. LiangH. SunY. MaL. SKP2- and OTUD1-regulated non-proteolytic ubiquitination of YAP promotes YAP nuclear localization and activity.Nat. Commun.201891226910.1038/s41467‑018‑04620‑y29891922
    [Google Scholar]
  64. LeeH.J. LiC.F. RuanD. PowersS. ThompsonP.A. FrohmanM.A. ChanC.H. ChanC-H. The DNA damage transducer RNF8 facilitates cancer chemoresistance and progression through twist activation.Mol. Cell20166361021103310.1016/j.molcel.2016.08.00927618486
    [Google Scholar]
  65. ZhangY. WangX. Targeting the Wnt/β-catenin signaling pathway in cancer.J. Hematol. Oncol.202013116510.1186/s13045‑020‑00990‑333276800
    [Google Scholar]
  66. CuiY. ZhaoM. YangY. XuR. TongL. LiangJ. ZhangX. SunY. FanY. Reversal of epithelial-mesenchymal transition and inhibition of tumor stemness of breast cancer cells through advanced combined chemotherapy.Acta Biomater.202215238039210.1016/j.actbio.2022.08.02436028199
    [Google Scholar]
  67. RizzoA. MollicaV. CimadamoreA. SantoniM. ScarpelliM. GiunchiF. ChengL. Lopez-BeltranA. FiorentinoM. MontironiR. MassariF. Is there a role for immunotherapy in prostate cancer?Cells202099205110.3390/cells909205132911806
    [Google Scholar]
  68. LiuB. ZhangM. ChuH. ZhangH. WuH. SongG. WangP. ZhaoK. HouJ. WangX. ZhangL. GaoC. The ubiquitin E3 ligase TRIM31 promotes aggregation and activation of the signaling adaptor MAVS through Lys63-linked polyubiquitination.Nat. Immunol.201718221422410.1038/ni.364127992402
    [Google Scholar]
  69. StultzJ. FongL. How to turn up the heat on the cold immune microenvironment of metastatic prostate cancer.Prostate Cancer Prostatic Dis.202124369771710.1038/s41391‑021‑00340‑533820953
    [Google Scholar]
  70. Bou-DarghamM.J. ShaL. SangQ.X.A. ZhangJ. Immune landscape of human prostate cancer: Immune evasion mechanisms and biomarkers for personalized immunotherapy.BMC Cancer202020157210.1186/s12885‑020‑07058‑y32552802
    [Google Scholar]
  71. LiH. ZhaoZ. LingJ. PanL. ZhaoX. ZhuH. YuJ. XieB. ShenJ. ChenW. USP14 promotes K63-linked RIG-I deubiquitination and suppresses antiviral immune responses.Eur. J. Immunol.2019491425310.1002/eji.20184760330466171
    [Google Scholar]
  72. CaoL. LiuX. ZhengB. XingC. LiuJ. Role of K63-linked ubiquitination in cancer.Cell Death Discov.20228141010.1038/s41420‑022‑01204‑036202787
    [Google Scholar]
  73. LiuS. QinT. LiuZ. WangJ. JiaY. FengY. GaoY. LiK. anlotinib alters tumor immune microenvironment by downregulating PD-L1 expression on vascular endothelial cells.Cell Death Dis.202011530910.1038/s41419‑020‑2511‑332366856
    [Google Scholar]
  74. HanL. YaoS. CaoS. MoG. LiJ. CaoY. HuangF. Triterpenoid saponins from anemone flaccida suppress tumor cell proliferation by regulating MAPK, PD1/PDL1, and STAT3 signaling pathways and altering cancer metabolism.OncoTargets Ther.201912109171093010.2147/OTT.S21266631849495
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206289246240110044931
Loading
/content/journals/acamc/10.2174/0118715206289246240110044931
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test