Skip to content
2000

Thin-Film Photovoltaics Using Cu(In,Ga)Se Nanomaterials

image of Thin-Film Photovoltaics Using Cu(In,Ga)Se2 Nanomaterials
Preview this chapter:

Cu(In,Ga)Se2 (CIGS) is a promising absorber material for thin film solar cells because of its excellent thermo-chemical stability and high power conversion efficiency. Despite the excellent performance, commercialization of CIGS solar cell technology has been hindered due to issues related to the preparation of the absorber layer. The manufacturing of CIGS absorbers needs innovative technological development to make them commercially competitive, simplified and cost-effective. In this connection, the solution process utilizing CIGS nanomaterial precursor is a non-vacuum, low-cost, non-toxic and scalable approach with a high potential for developing an absorber layer. The typical processes comprise the synthesis of high-quality CIGS nanomaterials followed by printing constituent precursors in thin film form. Subsequently, thermal/photonic post-treatments of the printed precursors transform into a high-quality photovoltaic-grade absorber. The chapter critically reviews CIGS nanomaterial synthesis methods and discusses various printing techniques. The discussion follows an investigation of printed thin film's thermal and photonic processing to realize a high-quality CIGS absorber layer suitable for thin film photovoltaics. The processing parameters such as annealing profile, post-treatment, annealing atmosphere, Selenium source, photonic fluences, and alkali doping are discussed to understand their impact on the absorber's composition, morphology, and optoelectronic properties. The findings and related reviews afford critical insight into the absorber thin film design to improve the performance of solution-processed chalcopyrite solar cells. Finally, current challenges and prospects for effective technology implementation are discussed.

/content/books/9789815256086.chapter-2
dcterms_subject,pub_keyword
-contentType:Journal
10
5
Chapter
content/books/9789815256086
Book
false
en
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test