Skip to content
2000
Volume 11, Issue 1
  • ISSN: 2210-3279
  • E-ISSN: 2210-3287

Abstract

Background: Identification of human actions from video has gathered much attention in past few years. Most of the computer vision tasks such as Health Care Activity Detection, Suspicious Activity detection, Human Computer Interactions etc. are based on the principle of activity detection. Automatic labelling of activity from videos frames is known as activity detection. Objective: Motivation of this work is to use most out of the data generated from sensors and use them for recognition of classes. Recognition of actions from videos sequences is a growing field with the upcoming trends of deep neural networks. Methods: Automatic learning capability of Convolutional Neural Network (CNN) make them good choice as compared to traditional handcrafted based approaches. With the increasing demand of RGB-D sensors combination of RGB and depth data is in great demand. Results: This work comprises of the use of dynamic images generated from RGB combined with depth map for action recognition purpose. We have experimented our approach on pre trained VGG-F model using MSR Daily activity dataset and UTD MHAD Dataset. We achieve state of the art results. To support our research, we have calculated different parameters apart from accuracy such as precision, F score, recall. Conclusion: Accordingly, the investigation confirms improvement in term of accuracy, precision, F-Score and Recall. The proposed model is 4 Stream model is prone to occlusion, used in real time and also the data from the RGB-D sensor is fully utilized.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/2210327909666191209155141
2021-01-01
2025-06-26
Loading full text...

Full text loading...

/content/journals/swcc/10.2174/2210327909666191209155141
Loading

  • Article Type:
    Research Article
Keyword(s): CNN; Convolution; deep learning; RGB-D; stream model; VGG
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test