Skip to content
2000
image of 60-GHz Millimeter-Wave over Visible Light Communications for Downlink Wireless Networks

Abstract

Background and Objective

In this paper, we address potential solution for downlink wireless communications by integrating visible light communications (VLC) with the broadband radio frequency (RF) networks operating at 60 GHz-millimeter wave (mmWave) band. For this hybrid design, the outdoor 60 GHz-mmWave based RF link is utilized to ensure backhaul connectivity for VLC indoor system, while the VLC exploiting the lighting infrastructure that essentially used LEDs as optical source to provide low-cost and high-speed data access.

Methods

The hybrid 60 GHz-mmWave/VLC system is analyzed by using 16-QAM OFDM signal, and its performance is investigated by evaluating the signal to noise ratio (SNR) and the received signal power distributions, for regular placement of LEDs and random location of receivers within the room. The impact of the transmitter-receiver parameters, and their orientations and directivities are also .

Results

Numerical results show the efficiency of the proposed system, which can retransmit RF signals at 60 GHz-mmWave band using visible optical carriers in the indoor environment.

Conclusion

The results suggest that the hybrid 60 GHz-mmWave/VLC system is able to provide reliable wireless data transmission, making it an attractive solution for downlink indoor communications.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/0122103279342499241007051849
2024-11-07
2025-06-17
Loading full text...

Full text loading...

References

  1. Ghassemlooy Z. Arnon S. Uysal M. Xu Z. Cheng J. Emerging optical wireless communications - Advances and challenges. IEEE J. Sel. Areas Comm. 2015 33 9 1738 1749 10.1109/JSAC.2015.2458511
    [Google Scholar]
  2. Tanaka Y. Komine T. Haruyama S. Nakagawa M. Indoor visible light data transmission system utilizing white LED lights. IEICE Trans. Commun. 2003 E86-B 8 2440 2454
    [Google Scholar]
  3. Komine T. Nakagawa M. Fundamental analysis for visible-light communication system using LED lights. IEEE Trans. Consum. Electron. 2004 50 1 100 107 10.1109/TCE.2004.1277847
    [Google Scholar]
  4. Khan L.U. Visible light communication: Applications, architecture, standardization and research challenges. Digit. Commun. Netw. 2017 3 2 78 88 10.1016/j.dcan.2016.07.004
    [Google Scholar]
  5. Pathak P.H. Feng X. Hu P. Mohapatra P. Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Commun. Surv. Tutor. 2015 17 4 2047 2077 10.1109/COMST.2015.2476474
    [Google Scholar]
  6. Cevik T. Yilmaz S. An overview of visible light communication systems. Int. J. Comput. Netw. Commun. 2015 7 6 139 150 10.5121/ijcnc.2015.7610
    [Google Scholar]
  7. Matheus L.E.M. Vieira A.B. Vieira L.F.M. Vieira M.A.M. Gnawali O. Gnawali O. Visible light communication: Concepts, applications and challenges. IEEE Commun. Surv. Tutor. 2019 21 4 3204 3237 10.1109/COMST.2019.2913348
    [Google Scholar]
  8. Yahia S. Meraihi Y. Ramdane-Cherif A. Gabis A.B. Acheli D. Guan H. A survey of channel modeling techniques for visible light communications. J. Netw. Comput. Appl. 2021 194 103206 10.1016/j.jnca.2021.103206
    [Google Scholar]
  9. Gupta A. Jha R.K. A survey of 5G network: Architecture and emerging technologies. IEEE Access 2015 3 1206 1232 10.1109/ACCESS.2015.2461602
    [Google Scholar]
  10. Pi Z. Khan F. An introduction to millimeter-wave mobile broadband systems. IEEE Commun. Mag. 2011 49 6 101 107 10.1109/MCOM.2011.5783993
    [Google Scholar]
  11. Lili Wei Hu R. Yi Qian Geng Wu Key elements to enable millimeter wave communications for 5G wireless systems. IEEE Wirel. Commun. 2014 21 6 136 143 10.1109/MWC.2014.7000981
    [Google Scholar]
  12. Bazzi A. Chafii M. Secure full duplex integrated sensing and communications. IEEE Trans. Inf. Forensics Security 2024 19 2082 2097 10.1109/TIFS.2023.3346696
    [Google Scholar]
  13. Li X. Zhang R. Hanzo L. Cooperative load balancing in hybrid visible light communications and wifi. IEEE Trans. Commun. 2015 63 4 1319 1329 10.1109/TCOMM.2015.2409172
    [Google Scholar]
  14. Basnayaka D.A. Haas H. Hybrid RF and VLC systems: Improving user data rate performance of VLC systems IEEE 81st Vehicular Technology Conference (VTC Spring) Glasgow, UK, 11-14 May, 2015, pp. 1-5. 10.1109/VTCSpring.2015.7145863
    [Google Scholar]
  15. Ayyash M. Elgala H. Khreishah A. Jungnickel V. Little T. Shao S. Rahaim M. Schulz D. Hilt J. Freund R. Coexistence of WiFi and LiFi toward 5G: Concepts, opportunities, and challenges. IEEE Commun. Mag. 2016 54 2 64 71 10.1109/MCOM.2016.7402263
    [Google Scholar]
  16. Basnayaka D.A. Haas H. Design and analysis of a hybrid radio frequency and visible light communication system. IEEE Trans. Commun. 2017 65 10 1 10.1109/TCOMM.2017.2702177
    [Google Scholar]
  17. Chedup S. Subba B. Dorji S. Perera T.D.P. Rajaram A. Jayakody D.N.K. Visible light energy harvesting in modern communication systems International Conference on Electrical, Electronics, Computer, Communication, Mechanical and Computing (EECCMC) Priyadarshini Engineering College, Vellore, Jan, 2018.
    [Google Scholar]
  18. Kafafy M. Fahmy Y. Abdallah M. Khairy M. Power efficient downlink resource allocation for hybrid RF/VLC wireless networks. IEEE Wireless Communications and Networking Conference (WCNC) San Francisco, CA, USA, 19-22 March, 2017, pp. 1-6.
    [Google Scholar]
  19. Khreishah A. Shao S. Gharaibeh A. Ayyash M. Elgala H. Ansari N. A Hybrid RF-VLC System for Energy Efficient Wireless Access. IEEE Trans. Green Commun. Netw. 2018 2 4 932 944 10.1109/TGCN.2018.2849944
    [Google Scholar]
  20. Shrivastava S. Chen B. Chen C. Wang H. Dai M. Deep Q-network learning based downlink resource allocation for hybrid RF/VLC systems. IEEE Access 2020 8 149412 149434 10.1109/ACCESS.2020.3014427
    [Google Scholar]
  21. Abuella H. Elamassie M. Uysal M. Xu Z. Serpedin E. Qaraqe K.A. Ekin S. Hybrid RF/VLC systems: A comprehensive survey on network topologies, performance analyses, applications, and future directions. IEEE Access 2021 9 160402 160436 10.1109/ACCESS.2021.3129154
    [Google Scholar]
  22. Vats A. Aggarwal M. Ahuja S. Outage and error performance analysis of dual hop hybrid RF-VLC system with wireless energy harvesting. Phys. Commun. 2022 55 101882 10.1016/j.phycom.2022.101882
    [Google Scholar]
  23. Feng L. Yang H. Hu R.Q. Wang J. MmWave and VLC-based indoor channel models in 5G wireless networks. IEEE Wirel. Commun. 2018 25 5 70 77 10.1109/MWC.2018.1600341
    [Google Scholar]
  24. Tavakkolnia I. Cheadle D. Bian R. Loh T.H. Haas H. High speed millimeter-wave and visible light communication with off-the-shelf components. IEEE Globecom Workshops (GC Wkshps) Taipei, Taiwan, 07-11 Dec, 2020, pp. 1-6.
    [Google Scholar]
  25. Zhu X. Doufexi A. Kocak T. Beamforming performance analysis for OFDM based IEEE 802.11ad millimeter-wave WPANs. 8th International Workshop on Multi-Carrier Systems & Solutions Herrsching, Germany, 03-04 May, 2011, pp. 1-5.
    [Google Scholar]
  26. Rajagopal S. Roberts R. Lim S.K. IEEE 802.15.7 visible light communication: Modulation schemes and dimming support. IEEE Commun. Mag. 2012 50 3 72 82 10.1109/MCOM.2012.6163585
    [Google Scholar]
  27. Feng L. Hu R.Q. Wang J. Xu P. Qian Y. Applying VLC in 5G networks: Architectures and key technologies. IEEE Netw. 2016 30 6 77 83 10.1109/MNET.2016.1500236RP
    [Google Scholar]
  28. Liu B. Tang P. Zhang J. Yin Y. Liu G. Xia L. Propagation characteristics comparisons between mmwave and visible light bands in the conference scenario. Photonics 2022 9 4 228 10.3390/photonics9040228
    [Google Scholar]
  29. Rangan S. Rappaport T.S. Erkip E. Millimeter-wave cellular wireless networks: Potentials and challenges. Proc. IEEE 2014 102 3 366 385 10.1109/JPROC.2014.2299397
    [Google Scholar]
  30. Barry J.R. Kahn J.M. Krause W.J. Lee E.A. Messerschmitt D.G. Simulation of multipath impulse response for indoor wireless optical channels. IEEE J. Sel. Areas Comm. 1993 11 3 367 379 10.1109/49.219552
    [Google Scholar]
  31. Qiu Y. Chen H. Meng W. Channel modeling for visible light communications - A survey. Wirel. Commun. Mob. Comput. 2016 16 4 2016 2034 10.1002/wcm.2665
    [Google Scholar]
  32. Gfeller F.R. Bapst U. Wireless in-house data communication via diffuse infrared radiation. Proc. IEEE 1979 67 11 1474 1486 10.1109/PROC.1979.11508
    [Google Scholar]
  33. Ghassemlooy Z. Popoola W. Rajbhandari S. Optical wireless communications: System and channel modelling with MATLAB. Boca Raton CRC Press 1st ed 2013 10.1201/b12687
    [Google Scholar]
  34. Sacchi C. Rahman T.F. Hemadeh I.A. El-Hajjar M. Millimeterwave transmission for small-cell backhaul in dense urban environment: A solution based on MIMO-OFDM and space-time shift keying (STSK). IEEE Access 2017 5 4000 4017 10.1109/ACCESS.2017.2680435
    [Google Scholar]
  35. Kanchi S. Sandilya S. Bhosale D. Pitkar A. Gondhalekar M. Overview of LTE-A technology 2013 IEEE Global High Tech Congress on Electronics Shenzhen, China, 17-19 Nov, 2013, pp. 195-200. 10.1109/GHTCE.2013.6767272
    [Google Scholar]
  36. Bazzi A. Chafii M. On integrated sensing and communication waveforms with tunable PAPR. IEEE Trans. Wirel. Commun. 2023 22 11 7345 7360 10.1109/TWC.2023.3250263
    [Google Scholar]
/content/journals/swcc/10.2174/0122103279342499241007051849
Loading
/content/journals/swcc/10.2174/0122103279342499241007051849
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test