Skip to content
2000
image of Convolutional Neural Network-based Smart Disaster Management Framework for Real-time Detection and Management of Forest Fires

Abstract

Introduction

Timely detection of catastrophic natural disasters, such as forest fires, is critical to minimizing losses and ensuring rapid response. Artificial intelligence is increasingly being recognized as a valuable tool in enhancing various stages of disaster management.

Method

This paper presents the development of a smart framework utilizing machine learning techniques for real-time detection and monitoring of natural disasters, specifically forest fires. The proposed approach employs a 10-layer convolutional neural network (CNN) that classifies aerial images into Fire, Non-Fire, and Smoke categories with high precision and speed. In addition to this, a CNN-based feature extraction process is performed and integrated with various ML classifiers, including support vector machine, k-nearest neighbor, decision tree, random forest, and extra trees.

Results

Extensive performance analysis reveals that the proposed 10-layer CNN model outperforms other classifiers, achieving an accuracy of 97.64% in the binary classification of fire vs. non-fire and 95.61% in the three-class classification of Fire, Non-Fire and Smoke classes. Furthermore, a comparative study with existing state-of-the-art methods demonstrates the proposed model's superior performance in both accuracy and computational complexity.

Conclusion

These results demonstrate the potential of the proposed CNN-based framework to serve as a reliable and effective tool for real-time disaster management across various applications, providing valuable support to emergency response teams in mitigating the impact of natural disasters.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/0122103279339983241028073645
2024-12-13
2025-01-19
Loading full text...

Full text loading...

References

  1. Peduzzi P. The disaster risk, global change, and sustainability nexus. Sustainability. 2019 11 4 957 10.3390/su11040957
    [Google Scholar]
  2. Cambridge Centre for Risk Studies NatCat and FinCat Correlation Impacts of severe natural catastrophes on financial markets 2018 Available from: www.jbs.cam.ac.uk/risk
  3. 2022 Disasters in numbers - World 2023 Available from: https://reliefweb.int/report/world/2022-disasters-numbers
  4. Fire management in tropical forests 2017 Available from: https://gfmc.online/wp-content/uploads/Fire-Management-Tropical-Forests-GOLDAMMER-GFMC-IPB-RFMRC-SEA-2018.pdf
  5. Lourenço L. Fernandes S. Nunes A. Bento-Gonçalves A. Vieira A. Determination of forest fire causes in Portugal 2013 Available from: https://repositorium.sdum.uminho.pt/bitstream/1822/24230/1/4_3_9.pdf
  6. The environmental impact of wildfires 2022 Available from: https://earth.org/environmental-impact-of-wildfires/Accessed: Mar. 16, 2024
  7. Tyukavina A. Potapov P. Hansen M.C. Pickens A.H. Stehman S.V. Turubanova S. Parker D. Zalles V. Lima A. Kommareddy I. Song X-P. Wang L. Harris N. Global trends of forest loss due to fire from 2001 to 2019. Frontiers in Remote Sensing 2022 3 825190 10.3389/frsen.2022.825190
    [Google Scholar]
  8. Linardos V. Drakaki M. Tzionas P. Karnavas Y. L. Machine learning in disaster management: Recent developments in methods and applications Mach. Learn. Knowl. Extr. 2022 4 2 446 473 10.3390/make4020020
    [Google Scholar]
  9. Preeti T. Kanakaraddi S. Beelagi A. Malagi S. Sudi A. Forest fire prediction using machine learning techniques 2021 International Conference on Intelligent Technologies, CONIT 2021 Hubli,India,25-27 June 2021, pp.1-6 Institute of Electrical and Electronics Engineers Inc. 10.1109/CONIT51480.2021.9498448
    [Google Scholar]
  10. Muhammad A. Khloud K A. Salma A S. Samar O A. Mashael E A. Maram A A. Maryam A. Role of machine learning algorithms in forest fire management: A literature review. J. Robot. Autom. 2021 5 1 10.36959/673/372
    [Google Scholar]
  11. Kinaneva D. Hristov G. Raychev J. Zahariev P. Early forest fire detection using drones and artificial intelligence. 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) Opatija, Croatia,20-24 May 2019,pp. 1060-1065 10.23919/MIPRO.2019.8756696
    [Google Scholar]
  12. Alkhatib R. Sahwan W. Alkhatieb A. Schütt B. A brief review of machine learning algorithms in forest fires science. Appl. Sci. (Basel) 2023 13 14 8275 10.3390/app13148275
    [Google Scholar]
  13. Abid F. A survey of machine learning algorithms based forest fires prediction and detection systems. Fire Technol. 2021 57 2 559 590 10.1007/s10694‑020‑01056‑z
    [Google Scholar]
  14. Saleh A. Zulkifley M.A. Harun H.H. Gaudreault F. Davison I. Spraggon M. Forest fire surveillance systems: A review of deep learning methods. Heliyon 2024 10 1 e23127 10.1016/j.heliyon.2023.e23127 38163175
    [Google Scholar]
  15. Geetha S. Abhishek C.S. Akshayanat C.S. Machine vision based fire detection techniques: A survey. Fire Technol. 2021 57 2 591 623 10.1007/s10694‑020‑01064‑z
    [Google Scholar]
  16. Dampage U. Bandaranayake L. Wanasinghe R. Kottahachchi K. Jayasanka B. Forest fire detection system using wireless sensor networks and machine learning. Sci. Rep. 2022 12 1 46 10.1038/s41598‑021‑03882‑9 34996960
    [Google Scholar]
  17. Bu F. Gharajeh M.S. Intelligent and vision-based fire detection systems: A survey. Image Vis. Comput. 2019 91 103803 10.1016/j.imavis.2019.08.007
    [Google Scholar]
  18. Muhammad K. Ahmad J. Baik S.W. Early fire detection using convolutional neural networks during surveillance for effective disaster management. Neurocomputing 2018 288 30 42 10.1016/j.neucom.2017.04.083
    [Google Scholar]
  19. Singh A. Raj K. Kumar T. Verma S. Roy A. Deep learning-based cost-effective and responsive robot for autism treatment. Drones (Basel) 2023 7 2 81 10.3390/drones7020081
    [Google Scholar]
  20. Zheng S. Zou X. Gao P. Zhang Q. Hu F. Zhou Y. Wu Z. Wang W. Chen S. A Forest fire recognition method based on modified deep CNN model. Forests 2024 15 1 111 10.3390/f15010111
    [Google Scholar]
  21. Zhang L. Wang M. Fu Y. Ding Y. A forest fire recognition method using UAV images based on transfer learning. Forests 2022 13 7 975 10.3390/f13070975
    [Google Scholar]
  22. Roy A.M. Bhaduri J. Kumar T. Raj K. WilDect-YOLO: An efficient and robust computer vision-based accurate object localization model for automated endangered wildlife detection. Ecol. Inform. 2023 75 101919 10.1016/j.ecoinf.2022.101919
    [Google Scholar]
  23. Roy A.M. Bhaduri J. DenseSPH-YOLOv5: An automated damage detection model based on DenseNet and Swin-Transformer prediction head-enabled YOLOv5 with attention mechanism. Adv. Eng. Inform. 2023 56 102007 10.1016/j.aei.2023.102007
    [Google Scholar]
  24. Roy A.M. Bose R. Bhaduri J. A fast accurate fine-grain object detection model based on YOLOv4 deep neural network. Neural Comput. Appl. 2022 34 5 3895 3921 10.1007/s00521‑021‑06651‑x
    [Google Scholar]
  25. Jiang B. Chen S. Wang B. Luo B. MGLNN: Semi-supervised learning via multiple graph cooperative learning neural networks. Neural Netw. 2022 153 204 214 10.1016/j.neunet.2022.05.024 35750007
    [Google Scholar]
  26. Jamil S. Roy A.M. An efficient and robust phonocardiography (PCG)-based valvular heart diseases (VHD) detection framework using vision Transformer (ViT). Comput. Biol. Med. 2023 158 106734 10.1016/j.compbiomed.2023.106734 36989745
    [Google Scholar]
  27. Jauro F. Chiroma H. Gital A.Y. Almutairi M. Abdulhamid S.M. Abawajy J.H. Deep learning architectures in emerging cloud computing architectures: Recent development, challenges and next research trend. Appl. Soft Comput. 2020 96 106582 10.1016/j.asoc.2020.106582
    [Google Scholar]
  28. Forest fire smoke and non fire image dataset. 2024 Available from: https://www.kaggle.com/datasets/amerzishminha/forest-fire-smoke-and-non-fire-image-datasetAccessed: Mar. 16, 2024
  29. Arpaci A. Malowerschnig B. Sass O. Vacik H. Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests. Appl. Geogr. 2014 53 258 270 10.1016/j.apgeog.2014.05.015
    [Google Scholar]
  30. Rodrigues M. de la Riva J. An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environ. Model. Softw. 2014 57 192 201 10.1016/j.envsoft.2014.03.003
    [Google Scholar]
  31. Liang H. Zhang M. Wang H. A neural network model for wildfire scale prediction using meteorological factors. IEEE Access 2019 7 176746 176755 10.1109/ACCESS.2019.2957837
    [Google Scholar]
  32. Tien Bui D. Le H.V. Hoang N.D. GIS-based spatial prediction of tropical forest fire danger using a new hybrid machine learning method. Ecol. Inform. 2018 48 104 116 10.1016/j.ecoinf.2018.08.008
    [Google Scholar]
  33. Tien Bui D. Hoang N.D. Samui P. Spatial pattern analysis and prediction of forest fire using new machine learning approach of multivariate adaptive regression splines and differential flower pollination optimization: A case study at Lao Cai province (Viet Nam). J. Environ. Manage. 2019 237 476 487 10.1016/j.jenvman.2019.01.108 30825780
    [Google Scholar]
  34. Pham B.T. Jaafari A. Avand M. Al-Ansari N. Dinh Du T. Yen H.P.H. Phong T.V. Nguyen D.H. Le H.V. Mafi-Gholami D. Prakash I. Thi Thuy H. Tuyen T.T. Performance evaluation of machine learning methods for forest fire modeling and prediction. Symmetry (Basel) 2020 12 6 1022 10.3390/sym12061022
    [Google Scholar]
  35. Qu J. Cui X. Automatic machine learning framework for forest fire forecasting. J. Phys.: Conf. Ser. 2020 1651 012116 10.1088/1742‑6596/1651/1/012116
    [Google Scholar]
  36. Jiao Z. A deep learning based forest fire detection approach using UAV and YOLOv3. 2019 1st International Conference on Industrial Artificial Intelligence (IAI) Shenyang, China, 23-27 July 2019, pp. 1-5 2019 10.1109/ICIAI.2019.8850815
    [Google Scholar]
  37. de Almeida R.V. Crivellaro F. Narciso M. Sousa A.I. Vieira P. Bee2Fire: A deep learning powered forest fire detection system. ICAART 2020 - Proceedings of the 12th International Conference on Agents and Artificial Intelligence SciTePress, 2020, pp. 603–609 10.5220/0008966106030609
    [Google Scholar]
  38. Rahul M. Shiva Saketh K. Sanjeet A. Srinivas Naik N. Early detection of forest fire using deep learning. TENCON 2020 - 2020 IEEE REGION 10 CONFERENCE (TENCON) Osaka, Japan, 16-19 November 2020, pp. 1136–1140 10.1109/TENCON50793.2020.9293722
    [Google Scholar]
  39. Barmpoutis P. Stathaki T. Dimitropoulos K. Grammalidis N. Early fire detection based on aerial 360-degree sensors, deep convolution neural networks and exploitation of fire dynamic textures. Remote Sens. (Basel) 2020 12 19 3177 10.3390/rs12193177
    [Google Scholar]
  40. Khan A. Hassan B. Khan S. Ahmed R. Abuassba A. DeepFire: A novel dataset and deep transfer learning benchmark for forest fire detection. Mob. Inf. Syst. 2022 2022 1 14 10.1155/2022/5358359
    [Google Scholar]
  41. Nguyen M.D. Vu H.N. Pham D.C. Choi B. Ro S. Multistage real-time fire detection using convolutional neural networks and long short-term memory networks. IEEE Access 2021 9 146667 146679 10.1109/ACCESS.2021.3122346
    [Google Scholar]
  42. Sathishkumar V.E. Cho J. Subramanian M. Naren O.S. Forest fire and smoke detection using deep learning-based learning without forgetting. Fire Ecol. 2023 19 1 9 10.1186/s42408‑022‑00165‑0
    [Google Scholar]
  43. Hosni Mahmoud H.A. Alharbi A.H. Alghamdi N.S. Time-efficient fire detection convolutional neural network coupled with transfer learning. Intelligent Automation & Soft Computing 2022 31 3 1393 1403 10.32604/iasc.2022.020629
    [Google Scholar]
  44. Li P. Zhao W. Image fire detection algorithms based on convolutional neural networks. Case Stud. Therm. Eng. 2020 19 100625 10.1016/j.csite.2020.100625
    [Google Scholar]
  45. Albahli S. Albattah W. Deep transfer learning for COVID-19 prediction: Case study for limited data problems. Curr. Med. Imaging Rev. 2021 17 8 973 980 10.2174/1573405616666201123120417 33231160
    [Google Scholar]
  46. Li Q. Yang Y. Guo Y. Li W. Liu Y. Liu H. Kang Y. Performance evaluation of deep learning classification network for image features. IEEE Access 2021 9 9318 9333 10.1109/ACCESS.2020.3048956
    [Google Scholar]
  47. Ahmad F. Farooq A. Khan M.U.G. Deep learning model for pathogen classification using feature fusion and data augmentation. Curr. Bioinform. 2021 16 3 466 483 10.2174/1574893615999200707143535
    [Google Scholar]
/content/journals/swcc/10.2174/0122103279339983241028073645
Loading
/content/journals/swcc/10.2174/0122103279339983241028073645
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test