Skip to content
2000
image of Performance Evaluation of mmWave Communication for Real-Time UAV-Base Station Links

Abstract

Introduction

In the context of modern communication networks, the increasing demand for high data rates, minimal latency, and improved reliability—especially in scenarios involving Unmanned Aerial Vehicles (UAVs)—calls for innovative solutions. Millimeter-wave (mmWave) communication emerges as a fitting choice due to its capacity to offer ample bandwidth and high data rates.

Method

This research paper presents a comprehensive study that compares the performance of mmWave communication links across four different frequencies (6, 28, 60, and 120 GHz) for UAV-to-Base Station (BS) communication. The investigation, conducted through simulations, adheres to atmospheric conditions such as rain and fog, different environments (urban and rural) scenarios. It evaluates the suitability of mmWave frequencies using critical performance metrics: latency, received power, Bit Error Rate (BER) and Signal-to-Interference plus Noise Ratio (SINR). These metrics play a fundamental role in assessing communication link quality.

Result

Our findings reveal that leveraging higher mmWave frequencies—specifically 60 and 120 GHz—significantly enhances UAV-to-BS communication performance. Compared to lower frequencies, these higher bands exhibit reduced latency, higher data rates, and improved throughput. Consequently, mmWave frequencies beyond 60 GHz prove well-suited for UAV communication, facilitating efficient data exchange with minimal delay.

Conclusion

Furthermore, the potential for reduced interference and enhanced reliability at these elevated frequencies makes them particularly advantageous in applications requiring seamless connectivity. Examples include UAV-assisted emergency response, surveillance, and remote sensing. These insights hold substantial implications for the design and deployment of UAV communication systems, highlighting mmWave technology’s transformative potential in the emerging era of aerial communication.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/0122103279324756240928113451
2024-10-22
2025-07-12
Loading full text...

Full text loading...

References

  1. Bazzi A. Chafii M. Secure full duplex integrated sensing and communications. IEEE Trans. Inf. Forensics Security 2024 19 2082 2097 10.1109/TIFS.2023.3346696
    [Google Scholar]
  2. Merwaday A. Guvenc I. UAV assisted heterogeneous networks for public safety communications. 2015 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), New Orleans, LA, USA, 09-12 March 2015, pp. 329-334. 10.1109/WCNCW.2015.7122576
    [Google Scholar]
  3. Mezzavilla M. Polese M. Zanella A. Dhananjay A. Rangan S. Kessler C. Rappaport T.S. Zorzi M. Public safety communications above 6 GHz: Challenges and opportunities. IEEE Access 2018 6 316 329 10.1109/ACCESS.2017.2762471
    [Google Scholar]
  4. He D. Chan S. Guizani M. Drone-assisted public safety networks: The security aspect. IEEE Commun. Mag. 2017 55 8 218 223 10.1109/MCOM.2017.1600799CM
    [Google Scholar]
  5. Agiwal M. Roy A. Saxena N. Next generation 5G wireless networks: A comprehensive survey. IEEE Commun. Surv. Tutor. 2016 18 3 1617 1655 10.1109/COMST.2016.2532458
    [Google Scholar]
  6. Rangan S. Rappaport T.S. Erkip E. Millimeter-wave cellular wireless networks: Potentials and challenges. Proc. IEEE 2014 102 3 366 385 10.1109/JPROC.2014.2299397
    [Google Scholar]
  7. Zeng Y. Lyu J. Zhang R. Cellular-connected UAV: Potential, challenges, and promising technologies. IEEE Wirel. Commun. 2019 26 1 120 127 10.1109/MWC.2018.1800023
    [Google Scholar]
  8. Xiao Z. Xia P. Xia X. Enabling UAV cellular with millimeter-wave communication: Potentials and approaches. IEEE Commun. Mag. 2016 54 5 66 73 10.1109/MCOM.2016.7470937
    [Google Scholar]
  9. Sanchez S.G. Mohanti S. Jaisinghani D. Chowdhury K.R. Millimeter-wave base stations in the sky: An experimental study of UAV-to-Ground communications. IEEE Trans. Mobile Comput. 2022 21 2 644 662 10.1109/TMC.2020.3013575
    [Google Scholar]
  10. Uwaechia A.N. Mahyuddin N.M. A comprehensive survey on millimeter wave communications for fifth-generation wireless networks: Feasibility and challenges. IEEE Access 2020 8 62367 62414 10.1109/ACCESS.2020.2984204
    [Google Scholar]
  11. Gapeyenko M. Moltchanov D. Andreev S. Heath R.W. Line-of-sight probability for mmWave-based UAV communications in 3D urban grid deployments. IEEE Trans. Wirel. Commun. 2021 20 10 6566 6579 10.1109/TWC.2021.3075099
    [Google Scholar]
  12. Chowdary A. Bazzi A. Chafii M. On hybrid radar fusion for integrated sensing and communication. IEEE Trans. Wirel. Commun. 2024 23 8 8984 9000 10.1109/TWC.2024.3357573
    [Google Scholar]
  13. Bai L. Han R. Liu J. Yu Q. Choi J. Zhang W. Air-to-ground wireless links for high-speed UAVs. IEEE J. Sel. Areas Comm. 2020 38 12 2918 2930 10.1109/JSAC.2020.3005471
    [Google Scholar]
  14. Flammini F. Pragliola C. Smarra G. Railway infrastructure monitoring by drones. 2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles and International Transportation Electrification Conference (ESARS-ITEC), Toulouse, France, 02-04 November 2016, pp. 1-6.
    [Google Scholar]
  15. Zhou Z. Zhang C. Xu C. Xiong F. Zhang Y. Umer T. Energy efficient industrial Internet of UAVs for power line inspection in smart grid. IEEE Trans. Industr. Inform. 2018 14 6 2705 2714 10.1109/TII.2018.2794320
    [Google Scholar]
  16. Xiao Z. Zhu L. Liu Y. Yi P. Zhang R. Xia X-G. Schober R. A survey on millimeter-wave beamforming enabled UAV communications and networking. IEEE Commun. Surv. Tutor. 2022 24 1 557 610 10.1109/COMST.2021.3124512
    [Google Scholar]
  17. Wang L. Che Y.L. Long J. Duan L. Wu K. Multiple access MmWave design for UAV-aided 5G communications. IEEE Wirel. Commun. 2019 26 1 64 71 10.1109/MWC.2018.1800216
    [Google Scholar]
  18. Xia W. Polese M. Mezzavilla M. Loianno G. Rangan S. Zorzi M. Millimeter Wave Remote UAV Control and Communications for Public Safety Scenarios 2019 16th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON), Boston, MA, USA, 10-13 June 2019, pp. 1-7. 10.1109/SAHCN.2019.8824919
    [Google Scholar]
  19. Fujio S. Ozaki K. UAV Deployment for MU-MIMO Capacity Maximization in UAV-assisted Cellular Networks with Millimeter-wave Beamforming. 2022 25th International Symposium on Wireless Personal Multimedia Communications (WPMC), Denmark, 30 Oct - 02 Nov 2022, pp. 244-9. 10.1109/WPMC55625.2022.10014720
    [Google Scholar]
  20. Naoumi S. Bomfin R. Alami R. Chafii M. TANAGERS: Emergent communication for UAVs as flying passive radars. Proceedings of the 2024 IEEE Wireless Communications and Networking Conference (WCNC), Dubai, United Arab Emirates. Mar 8-11 2024, pp. 1-6. 10.1109/WCNC57260.2024.10571151
    [Google Scholar]
  21. Zhang L. Ansari N. Latency-aware IoT service provisioning in UAV-aided mobile-edge computing networks. IEEE Internet Things J. 2020 7 10 10573 10580 10.1109/JIOT.2020.3005117
    [Google Scholar]
  22. Khatun M. Mehrpouyan H. Matolak D. Guvenc I. Millimeter wave systems for airports and short-range aviation communications: A survey of the current channel models at mmWave frequencies. 2017 IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), St. Petersburg, FL, USA, 17-21 September 2017, pp. 1-8 10.1109/DASC.2017.8102042
    [Google Scholar]
  23. Cheng L. Zhu Q. Wang C-X. Zhong W. Hua B. Jiang S. Modeling and Simulation for UAV Air-to-Ground mmWave Channels. 2020 14th European Conference on Antennas and Propagation (EuCAP), Copenhagen, Denmark, 15-20 March 2020, pp. 1-5. 10.23919/EuCAP48036.2020.9136077
    [Google Scholar]
  24. Jung H. Lee I.H. Performance analysis of millimeter-wave UAV swarm networks under blockage effects. Sensors. 2020 20 16 4593 10.3390/s20164593 32824301
    [Google Scholar]
  25. Vu T.K. Liu C.F. Bennis M. Debbah M. Latva-aho M. Hong C.S. Ultra-reliable and low latency communication in mmWave-enabled massive MIMO networks. IEEE Commun. Lett. 2017 21 9 2041 2044 10.1109/LCOMM.2017.2705148
    [Google Scholar]
  26. Lema M.A. Laya A. Mahmoodi T. Cuevas M. Sachs J. Markendahl J. Dohler M. Business case and technology analysis for 5G low latency applications. IEEE Access 2017 5 1 10.1109/ACCESS.2017.2685687
    [Google Scholar]
  27. Srivastava A. Fund F. Panwar SS. An Experimental Evaluation of Low Latency Congestion Control for mmWave Links. Proceedings of the IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Toronto, ON, Canada,06-09 July 2020. pp. 352-357. 10.1109/INFOCOMWKSHPS50562.2020.9162881
    [Google Scholar]
  28. Rappaport T.S. Gutierrez F. Ben-Dor E. Murdock J.N. Qiao Y. Tamir J.I. Broadband millimeter wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. IEEE Trans. Antenn. Propag. 2013 61 4 1850 1859 10.1109/TAP.2012.2235056
    [Google Scholar]
  29. Le H.V. Hirano T. Hirokawa J. Ando M. Site diversity performance of millimeter wave wireless networks against localized rain. Proceedings of the 8th European Conference on Antennas and Propagation (EuCAP 2014), The Hague, Netherlands, 2014 Apr 6-11, pp. 3477-81. 10.1109/EuCAP.2014.6902578
    [Google Scholar]
  30. Zhang Y.P. Wang P. Goldsmith A. Rainfall effect on the performance of millimeter-wave MIMO systems. IEEE Trans. Wirel. Commun. 2015 14 9 4857 4866 10.1109/TWC.2015.2427282
    [Google Scholar]
  31. Ullah H. Tahir F.A. A high gain and wideband narrow-beam antenna for 5G millimeter-wave applications. IEEE Access 2020 8 29430 29434 10.1109/ACCESS.2020.2970753
    [Google Scholar]
/content/journals/swcc/10.2174/0122103279324756240928113451
Loading
/content/journals/swcc/10.2174/0122103279324756240928113451
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test