Skip to content
2000
image of Multiple Criteria-Based Intelligent Techniques for Efficient Handover in Next-Generation Networks

Abstract

Background

Several wireless technologies are assumed to be operating in cooperation for next-generation networks. These networks offer various services to mobile users; however, efficient handover between different networks is the most challenging task in high mobility scenarios. The traditional signal strength-based handover algorithms are not able to cope with mobile users' high-quality requirements.

Methods

In this paper, multiple criteria-based intelligent techniques are proposed to deal with inefficiencies related to handover. This technique makes use of artificial neural networks that take multiple parameters as inputs in order to predict the degradation of parameters. These predictions are further used to design rules for initiating handover procedures prior to service quality degradation.

Results

Based on the prediction results obtained by deep neural networks, the handover decisions are recommended according to the type of application: conversational or streaming.

Conclusion

The simulation results demonstrate the efficacy of the proposed method as there is an improvement of up to 40% and 25% in terms of handover rate and service disruption time, respectively, with an acceptable prediction error of 0.05.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/0122103279323630240919101232
2024-10-14
2024-11-22
Loading full text...

Full text loading...

References

  1. Pahal S. Nandal P. Handover challenges in wireless communications and their solutions. SSRN 2024 10.2139/ssrn.4749805
    [Google Scholar]
  2. Bazzi A. Chafii M. On outage-based beamforming design for dual-functional radar-communication 6G systems. IEEE Trans. Wirel. Commun. 2023 22 8 5598 5612 10.1109/TWC.2023.3235617
    [Google Scholar]
  3. Nasser N. Hasswa A. Hassanein H. Handoffs in fourth generation heterogeneous networks. IEEE Commun. Mag. 2006 44 10 96 103 10.1109/MCOM.2006.1710420
    [Google Scholar]
  4. Bazzi A. Chafii M. On integrated sensing and communication waveforms with tunable PAPR. IEEE Trans. Wirel. Commun. 2023 22 11 7345 7360 10.1109/TWC.2023.3250263
    [Google Scholar]
  5. Çalhan A. Çeken C. Artificial neural network based vertical handoff algorithm for reducing handoff latency. Wirel. Pers. Commun. 2013 71 4 2399 2415 10.1007/s11277‑012‑0944‑4
    [Google Scholar]
  6. Gudmundson M. Analysis of handover algorithms (microcellular radio). [1991 Proceedings] 41st IEEE Vehicular Technology Conference St. Louis, MO, USA 1991 1991 19-22 May 1991 537 542 10.1109/VETEC.1991.140549
    [Google Scholar]
  7. Vijayan R. Holtzman J.M. A model for analyzing handoff algorithms (cellular radio). IEEE Trans. Vehicular Technol. 1993 42 3 351 356 10.1109/25.231888
    [Google Scholar]
  8. Zonoozi M.M. Dassanayake P. User mobility modeling and characterization of mobility patterns. IEEE J. Sel. Areas Comm. 1997 15 7 1239 1252 10.1109/49.622908
    [Google Scholar]
  9. Shakir Z.D. Zec J. Kostanic I. Al-Thaedan A. Salah M.E.M. User equipment geolocation depended on long-term evolution signal-level measurements and timing advance. Iran. J. Electr. Comput. Eng. 2023 13 2 10.11591/ijece.v13i2.pp1560‑1569
    [Google Scholar]
  10. Shakir Z. Zec J. Kostanic I. LTE geolocation based on measurement reports and timing advance. Advances in Information and Communication 1165 1175 2020 10.1007/978‑3‑030‑12385‑7_81
    [Google Scholar]
  11. Bazzi A. Chafii M. Secure full duplex integrated sensing and communications. IEEE Trans. Inf. Forensics Security 2024 19 2082 2097 10.1109/TIFS.2023.3346696
    [Google Scholar]
  12. Hu J. Zeng C. Wang Z. Zhang J. Guo K. Xu H. Huang J. Chen K. Load balancing with multi-level signals for lossless datacenter networks. IEEE/ACM Trans. Netw. 2024 32 3 2736 2748 10.1109/TNET.2024.3366336
    [Google Scholar]
  13. Pahal S. Singh B. Arora A. A prediction based handover trigger in overlapped heterogeneous wireless networks 2013 IEEE International Conference on Signal Processing, Computing and Control (ISPCC) 26-28 September 2013 Solan, India 1 6 2013 10.1109/ISPCC.2013.6663418
    [Google Scholar]
  14. Pahal S. Gulia V. Chauhan N. Goel A. Analysis of handoff factors in wireless networks. 2016 International Conference on Computing, Communication and Automation (ICCCA) Greater Noida, India 29-30 April 2016 2017 10.1109/CCAA.2016.7813798
    [Google Scholar]
  15. Mr P.M.P.J.K. Gavali V.S. A Study of RSS based Vertical Handover Decision Algorithms. Int. J. Eng. Res. Technol. (Ahmedabad) 2015 4 2
    [Google Scholar]
  16. Yew H.T. Chekima A. Kiring A. Mbulwa A.I. Dargham J.A. Chung S.K. RSS based vertical handover schemes in heterogeneous wireless networks: past, present & future. 26-27 September 2020 Kota Kinabalu, Malaysia 2020 1 5 10.1109/IICAIET49801.2020.9257844
    [Google Scholar]
  17. Choi H.H. Kim H. Na J. Lee H. Non-orthogonal multiple access-based handover for throughput enhancement. IEEE Trans. Vehicular Technol. 2021 70 11 12278 12282 10.1109/TVT.2021.3117785
    [Google Scholar]
  18. Wang W. Yang Y. Khan L.U. Niyato D. Han Z. Guizani M. Digital twin for wireless networks: Security attacks and solutions. IEEE Wirel. Commun. 2023 ••• 10.1109/MWC.020.2200609
    [Google Scholar]
  19. Yang Y. Zhang B. Guo D. Generative AI for secure and privacy-preserving mobile crowdsensing. ArXiv 2024 10.1109/MWC.004.2400017
    [Google Scholar]
  20. Liu X. Jiang L. G. He C. Liao H. W. An intelligent vertical handoff algorithm in heterogeneous wireless networks 2008 International Conference on Neural Networks and Signal Processing 07-11 June 2008 Nanjing 2008 550 555 10.1109/ICNNSP.2008.4590411
    [Google Scholar]
  21. Ling Y. Yi B. Zhu Q. An improved vertical handoff decision algorithm for heterogeneous wireless networks 2008 4th International Conference on Wireless Communications, Networking and Mobile Computing Dalian, China 12-14 October 2008 2008 10.1109/WiCom.2008.64
    [Google Scholar]
  22. Guo Q. Zhu T. Xu X. An adaptive multi-criteria vertical handoff decision algorithm for radio heterogeneous network IEEE International Conference on Communications Seoul, Korea (South) 16-20 May 2005 2005 4 2769 2773 10.1109/ICC.2005.1494852
    [Google Scholar]
  23. Stoyanova M. Mähönen P. Algorithmic approaches for vertical handoff in heterogeneous wireless environment. 2007 IEEE Wireless Communications and Networking Conference Hong Kong, China 11-15 March 2007 2007 10.1109/WCNC.2007.692
    [Google Scholar]
  24. Nkansah-Gyekye Y. Agbinya J.I. A vertical handoff decision algorithm for next generation wireless networks. 2008 Third International Conference on Broadband Communications, Information Technology & Biomedical Applications 2008 23-26 November 2008 Pretoria, South Africa 10.1109/BROADCOM.2008.42
    [Google Scholar]
  25. Bhattacharya P.P. Application of artificial neural network in cellular handoff management. International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007) Sivakasi, India 13-15 December 2007 2007 56 60 10.1109/ICCIMA.2007.87
    [Google Scholar]
  26. Nasser N. Guizani S. Al-Masri E. Middleware vertical handoff manager: A neural network-based solution. 2007 IEEE International Conference on Communications Glasgow, UK 24-28 June 2007 2007 10.1109/ICC.2007.940
    [Google Scholar]
  27. Al-Thaedan A. Shakir Z. Mjhool A.Y. Alsabah R. Al-Sabbagh A. Salah M. Zec J. Downlink throughput prediction using machine learning models on 4G-LTE networks. Int. J. Inf. Technol. 2023 15 6 2987 2993 10.1007/s41870‑023‑01358‑9
    [Google Scholar]
  28. Al-Thaedan A. Shakir Z. Mjhool A.Y. Alsabah R. Al-Sabbagh A. Nembhard F. Salah M. A machine learning framework for predicting downlink throughput in 4G-LTE/5G cellular networks. Int. J. Inf. Technol. 2024 16 2 651 657 10.1007/s41870‑023‑01678‑w
    [Google Scholar]
  29. Jin R. Enhancing upper-level performance from below: Performance measurement and optimization in LTE networks. Doctor of Philosophy, University of Connecticut - Storrs 2016
    [Google Scholar]
  30. Samba A. Busnel Y. Blanc A. Dooze P. Simon G. Instantaneous throughput prediction in cellular networks: Which information is needed? 2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM) Lisbon, Portugal 08-12 May 2017 2017 10.23919/INM.2017.7987345
    [Google Scholar]
  31. Yue C. Jin R. Suh K. Qin Y. Wang B. Wei W. LinkForecast: Cellular link bandwidth prediction in LTE networks. IEEE Trans. Mobile Comput. 2018 17 7 1582 1594 10.1109/TMC.2017.2756937
    [Google Scholar]
  32. Jomrich F. Fischer F. Knapp S. Meuser T. Richerzhagen B. Steinmetz R. Enhanced cellular bandwidth prediction for highly automated driving. Smart Cities, Green Technologies and Intelligent Transport Systems 2019 328 350 10.1007/978‑3‑030‑26633‑2_16
    [Google Scholar]
  33. Elsherbiny H. Abbas H.M. Abou-Zeid H. Hassanein H.S. Noureldin A. 4G LTE network throughput modelling and prediction. GLOBECOM 2020 - 2020 IEEE Global Communications Conference Taipei, Taiwan 07-11 December 2020 2020 10.1109/GLOBECOM42002.2020.9322410
    [Google Scholar]
  34. Imoize A.L. Orolu K. Atayero A.A.A. Analysis of key performance indicators of a 4G LTE network based on experimental data obtained from a densely populated smart city. Data Brief 2020 29 105304 10.1016/j.dib.2020.105304 32140519
    [Google Scholar]
  35. Pahal S. Singh B. Arora A. Cross layer based dynamic handover decision in heterogeneous wireless networks. Wirel. Pers. Commun. 2015 82 3 1665 1684 10.1007/s11277‑015‑2305‑6
    [Google Scholar]
  36. Shi Z. Zhu Q. Network selection based on multiple attribute decision making and group decision making for heterogeneous wireless networks. J. China Univ. Post Telecommun. 2012 19 5 92 114 10.1016/S1005‑8885(11)60305‑1
    [Google Scholar]
  37. Fernandes S. Karmouch A. Vertical mobility management architectures in wireless networks: A comprehensive survey and future directions. IEEE Commun. Surv. Tutor. 2012 14 1 45 63 10.1109/SURV.2011.082010.00099
    [Google Scholar]
  38. Ahmad A. Network selection using automated version facilitated by user preferences 4829 4833 2017
    [Google Scholar]
  39. Pahal S. Singh B. Arora A. Cross layer trigger-based handover scheme for mobile WiMAX networks. Int. J. Ad Hoc Ubiquitous Comput. 2015 19 3/4 133 10.1504/IJAHUC.2015.070588
    [Google Scholar]
  40. Abdulazeez- Ahmed M. Kamariah Nordin N. Bint Sali A. Hashim F. Multi-criteria handover decision for heterogeneous networks: Carrier aggregation deployment scenario. Int. J. Comput. Netw. Commun. 2020 12 4 41 54 10.5121/ijcnc.2020.12403
    [Google Scholar]
  41. Kunarak S. Suleesathira R. Multi-criteria vertical handoff decision algorithm for overlaid heterogeneous mobile IP networks. J. Franklin Inst. 2020 357 10 6321 6351 10.1016/j.jfranklin.2020.03.025
    [Google Scholar]
  42. Khan M.W. Khan U.S. Saleem M.M. Rashid N. Multi-criteria handoff decision making algorithm for seamless mobility in heterogenous wireless networks. J. Commun. 2023 18 3 164 171 10.12720/jcm.18.3.164‑171
    [Google Scholar]
  43. Pahal S. Sehrawat P. Multi-criteria handoff decision algorithms in wireless networks. IOSR J. Mob. Comput. Appl. 2015 2 2 46 55
    [Google Scholar]
  44. Satapathy P. Mahapatro J. An efficient multicriteria‐based vertical handover decision‐making algorithm for heterogeneous networks. Trans. Emerg. Telecommun. Technol. 2022 33 4 e4409 10.1002/ett.4409
    [Google Scholar]
  45. Ye H. Liang L. Li G.Y. Kim J. Lu L. Wu M. Machine learning for vehicular networks. ArXiv 1 16 2017 10.48550/arXiv.1712.07143
    [Google Scholar]
  46. Ashour A.F. Fouda M.M. AI-based approaches for handover optimization in 5G new radio and 6G. 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE) 2023 16-16 February 2023 Jakarta, Indonesia 336 341 10.1109/ICCoSITE57641.2023.10127687
    [Google Scholar]
  47. Saad S.A. Shayea I. Sid Ahmed N.M.O. Artificial intelligence linear regression model for mobility robustness optimization algorithm in 5G cellular networks. Alex. Eng. J. 2024 89 125 148 10.1016/j.aej.2024.01.014
    [Google Scholar]
  48. Mahboob S. Liu L. Revolutionizing future connectivity: A contemporary survey on ai-empowered satellite-based non-terrestrial networks in 6G. IEEE Commun. Surv. Tutor. 2024 26 2 1279 1321 10.1109/COMST.2023.3347145
    [Google Scholar]
  49. Ganesan R. Sowmya B. An improved vertical handoff decision based on the modular neural network with fuzzy logic for wireless heterogeneous network. Int. J. Netw. Virtual Organ. 2020 23 4 344 10.1504/IJNVO.2020.110506
    [Google Scholar]
  50. Hwang W.S. Cheng T.Y. Wu Y.J. Cheng M.H. Adaptive handover decision using fuzzy logic for 5G ultra-dense networks. Electronics (Basel) 2022 11 20 3278 10.3390/electronics11203278
    [Google Scholar]
  51. Chowdary A. Bazzi A. Chafii M. On hybrid radar fusion for integrated sensing and communication. IEEE Trans. Wirel. Commun. 2024 ••• 1 10.1109/TWC.2024.3357573
    [Google Scholar]
  52. Wang Z. Wang W. Yang Y. Han Z. Xu D. Su C. CNN‐ and GAN‐based classification of malicious code families: A code visualization approach. Int. J. Intell. Syst. 2022 37 12 12472 12489 10.1002/int.23094
    [Google Scholar]
  53. Naoumi S. Bazzi A. Bomfin R. Chafii M. Complex neural network based joint AoA and AoD estimation for bistatic ISAC. IEEE J. Sel. Top. Signal Process. 2024 ••• 1 15 10.1109/JSTSP.2024.3387299
    [Google Scholar]
  54. Paropkari R.A. Thantharate A. Beard C. Deep-mobility: A deep learning approach for an efficient and reliable 5G handover I2022 International Conference on Wireless Communications Signal Processing and Networking (WiSPNET) Chennai, India 24-26 March 2022 244 250 2022 10.1109/WiSPNET54241.2022.9767158
    [Google Scholar]
  55. da Silva Brilhante D. de Rezende J.F. Marchetti N. Handover optimisation for high-capacity low-latency 5G NR mmWave communication. Ad Hoc Netw. 2024 153 September 103328 10.1016/j.adhoc.2023.103328
    [Google Scholar]
  56. Pahal S. Rathee N. Singh B. A deep learning-based model for link quality estimation in vehicular networks. IETE J. Res. 2021 69 8 1 10
    [Google Scholar]
  57. Hu J. Shen H. Liu X. Wang J. RDMA transports in datacenter networks: Survey. IEEE Netw. 2024 1 10.1109/MNET.2024.3397781
    [Google Scholar]
  58. Wang J. Tang J. Xu Z. Spatiotemporal modeling and prediction in cellular networks: A big data enabled deep learning approach. IEEE Conference on Computer Communications Atlanta, GA, USA 01-04 May 2017 10.1109/INFOCOM.2017.8057090
    [Google Scholar]
  59. Zayani R. Bouallegue R. Roviras D. Levenberg-Marquardt learning neural network for adaptive predistortion for time-varying HPA with memory in OFDM systems. 2008 16th European Signal Processing Conference Lausanne, Switzerland 25-29 August 2008 2008
    [Google Scholar]
  60. Hagan M.T. Menhaj M.B. Training feedforward networks with the Marquardt algorithm. IEEE Trans. Neural Netw. 1994 5 6 989 993 10.1109/72.329697 18267874
    [Google Scholar]
  61. Levenberg K. A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 1944 2 2 164 168 10.1090/qam/10666
    [Google Scholar]
  62. Marquardt D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963 11 2 431 441 10.1137/0111030
    [Google Scholar]
/content/journals/swcc/10.2174/0122103279323630240919101232
Loading
/content/journals/swcc/10.2174/0122103279323630240919101232
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test