Skip to content
2000
image of BER Analysis of Underlay Cooperative Cognitive Radio-based NOMA System

Abstract

Background

The integration of Cooperative Communications (CC), Cognitive Radio (CR) technology, and Non-Orthogonal Multiple Access (NOMA) techniques, termed Cooperative Cognitive Radio used NOMA (CCR-NOMA) systems, has emerged as a promising solution to address spectrum scarcity and connectivity challenges anticipated in sixth generation (6G) networks.

Aim

This studyaims to investigate the Bit Error Rate (BER) performance of underlay CCR-NOMA systems.

Methods

We derive precise closed-form expressions for BER at distant users under perfect and imperfect Channel State Information (CSI) conditions. These mathematical formulations are validated through Monte Carlo simulations.

Results

Our results indicate that the near user 𝐶𝑈 exhibits superior performance compared to the far user 𝐶𝑈. Additionally, distant users utilizing the CCR-OMA protocol demonstrate better BER performance than those employing the CCR-NOMA protocol.

Conclusion

The presence of imperfect CSI adversely affects BER performance. Moreover, the derived closed-form expressions for BER in the investigated system align well with Monte Carlo simulations. These findings provide valuable insights for optimizing the performance of CCR-NOMA systems in real-world scenarios.

Loading

Article metrics loading...

/content/journals/swcc/10.2174/0122103279275260240925050941
2024-10-09
2024-11-26
Loading full text...

Full text loading...

References

  1. Bazzi A. Chafii M. On outage-based beamforming design for dual-functional radar-communication 6g systems. IEEE Trans. Wirel. Commun. 2023 22 8 5598 5612 10.1109/TWC.2023.3235617
    [Google Scholar]
  2. Wang D. Bazzi A. Chafii M. RIS-enabled integrated sensing and communication for 6g systems. IEEE Wireless Communications and Networking Conference (WCNC) , New York, USA, 31 Dec 2023, pp. 1-6. 10.1109/WCNC57260.2024.10571090
    [Google Scholar]
  3. Bazzi A. Chafii M. Secure full duplex integrated sensing and communications. IEEE Trans. Inf. Forensics Security 2024 19 2082 2097 10.1109/TIFS.2023.3346696
    [Google Scholar]
  4. Dangi R. Choudhary G. Dragoni N. Lalwani P. Khare U. Kundu S. 6G mobile networks: Key technologies, directions, and advances. Telecom 2023 4 4 836 876 10.3390/telecom4040037
    [Google Scholar]
  5. Naoumi S. Bazzi A. Bomfin R. Chafii M. Complex neural network based joint AoA and AoD estimation for bistatic ISAC. IEEE J. Sel. Top. Signal Process. 2024 1 15 10.1109/JSTSP.2024.3387299
    [Google Scholar]
  6. Naoumi S. Bazzi A. Bomfin R. Chafii M. Deep learning-enabled angle estimation in bistatic ISAC systems. 2023 IEEE Globecom Workshops (GC Wkshps), Kuala Lumpur, Malaysia, 04-08 December 2023, pp. 854-859. 10.1109/GCWkshps58843.2023.10464930
    [Google Scholar]
  7. Akhtar M.W. Hassan S.A. Ghaffar R. Jung H. Garg S. Hossain M.S. The shift to 6G communications: Vision and requirements. Hum Centric Comput Inf Sci. 2020 10 1 53 10.1186/s13673‑020‑00258‑2
    [Google Scholar]
  8. Ad M. Khelil A. Performance investigation of CR-NOMA based underlay paradigm. Proceedings of the 5th International Conference on Electrical Engineering and Control Applications, Khenchela, Algeria, November 2022.
    [Google Scholar]
  9. Arzykulov S. Celik A. Nauryzbayev G. Eltawil A.M. UAV-assisted cooperative & cognitive NOMA: Deployment, clustering, and resource allocation. IEEE Trans. Cogn. Commun. Netw. 2022 8 1 263 281 10.1109/TCCN.2021.3105133
    [Google Scholar]
  10. Salameh H.B. Abdel-Razeq S. Al-Obiedollah H. Integration of Cognitive Radio Technology in NOMA-Based B5G Networks: State of the Art. Challenges, and Enabling Technologies 2023 11
    [Google Scholar]
  11. Jain M. Soni S. Sharma N. Rawal D. Performance analysis at far and near user in NOMA based system in presence of SIC error. AEU Int. J. Electron. Commun. 2020 114 152993 10.1016/j.aeue.2019.152993
    [Google Scholar]
  12. Kara F. Kaya H. BER performances of downlink and uplink NOMA in the presence of SIC errors over fading channels. IET Commun. 2018 12 15 1834 1844 10.1049/iet‑com.2018.5278
    [Google Scholar]
  13. Jain M. Sharma N. Gupta A. Rawal D. Garg P. Performance analysis of NOMA assisted mobile ad hoc networks for sustainable future radio access. IEEE Trans. Sustain. Comput. 2021 6 2 347 357 10.1109/TSUSC.2020.2987427
    [Google Scholar]
  14. Khennoufa F. Khelil A. Exact bit error rate of cooperative NOMA without diversity combining. 2021 International Conference on Artificial Intelligence for Cyber Security Systems and Privacy (AI-CSP), El Oued, Algeria: IEEE, Nov. 2021, pp. 1–5. 10.1109/AI‑CSP52968.2021.9671217
    [Google Scholar]
  15. Sashiganth M. Thiruvengadam S.J. Sriram Kumar D. BER analysis of full duplex NOMA downlink and uplink co-operative user relaying systems over Nakagami-m fading environment. Phys. Commun. 2020 38 100963 10.1016/j.phycom.2019.100963
    [Google Scholar]
  16. Bariah L. Muhaidat S. Al-Dweik A. Error performance of NOMA-based cognitive radio networks with partial relay selection and interference power constraints. IEEE Trans. Commun. 2020 68 2 765 777 10.1109/TCOMM.2019.2921360
    [Google Scholar]
  17. Üstünbaş S. Aygölü Ü. BER analysis of non‐orthogonal multiple access‐based cognitive butterfly network. Electron. Lett. 2020 56 7 357 360 10.1049/el.2019.3618
    [Google Scholar]
  18. Le C.B. Do D.T. Zaharis Z.D. Mavromoustakis C.X. Mastorakis G. Markakis E.K. System performance analysis in cognitive radio-aided NOMA Network: An application to vehicle-to-everything communications. Wirel. Pers. Commun. 2021 120 3 1975 2000 10.1007/s11277‑021‑08273‑x
    [Google Scholar]
  19. Ad M. Khelil A. Outage performance of underlay CR-NOMA-based D2D communications under imperfect CSI and SIC. Int. J. Sensors Wirel. Commun. Control 2024 14 2 104 112 10.2174/0122103279272325231130112108
    [Google Scholar]
  20. Liu X. Chen Z. Wang Y. Zhou F. Luo Y. Hu R.Q. BER analysis of NOMA-enabled visible light communication systems with different modulations. IEEE Trans. Vehicular Technol. 2019 68 11 10807 10821 10.1109/TVT.2019.2938909
    [Google Scholar]
  21. Goldsmith A. Wireless Communications Stanford University 2005 427 10.1017/CBO9780511841224
    [Google Scholar]
  22. Wei F. Zhou T. Xu T. Hu H. BER analysis for uplink NOMA in asymmetric channels. IEEE Commun. Lett. 2020 24 11 2435 2439 10.1109/LCOMM.2020.3003274
    [Google Scholar]
  23. Arzykulov S. Tsiftsis T.A. Nauryzbayev G. Abdallah M. Outage performance of cooperative underlay CR-NOMA with imperfect CSI. IEEE Commun. Lett. 2019 23 1 176 179 10.1109/LCOMM.2018.2878730
    [Google Scholar]
  24. Hoang T.A. Le C.B. Do D.T. Security performance analysis for power domain NOMA employing in cognitive radio networks. Bull Electr Eng Inf. 2020 9 3 1046 1054 10.11591/eei.v9i3.1639
    [Google Scholar]
/content/journals/swcc/10.2174/0122103279275260240925050941
Loading
/content/journals/swcc/10.2174/0122103279275260240925050941
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Cooperative Communication ; CCR-NOMA ; Cognitive Radio ; NOMA ; BER ; OMA
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test