Skip to content
2000
image of Two-Dimensional MXene (Ti3C2Tx)-based Nano-Photosensitizers for Enhanced Photothermal Ablation of Tumor Cells

Abstract

Cancer remains one of the leading causes of death globally, accounting for approximately one in every six deaths. Traditional cancer therapies, including surgery, chemotherapy, chemoimmunotherapy, and radiation, face numerous challenges and limitations. In this context, we explore the advantages of photothermal therapy (PTT) using two-dimensional (2D) MXene-based nanocomposites for cancer treatment. MXenes, composed of abundant and non-toxic elements, such as titanium (Ti), carbon (C), fluorine (F), and oxygen (O), demonstrate low toxicity and are promising candidates in photothermal cancer therapies. Their ultrathin planar nanostructure, high photothermal conversion efficiency, strong near-infrared (NIR) responsiveness, and chemically modifiable surfaces enhance their therapeutic potential. Recent innovations include the development of folic acid-functionalized Au@c-TiC nanostructures, a skin-mountable electrostimulation patch (eT-patch), ionic gels containing MXene (TiCTx), and composite scaffolds made of MXene, collagen, silk fibroin, and quercetin. These MXene-based photosensitive compounds offer efficient targeting and selective treatment of cancer cells, highlighting their significant role in advancing cancer therapies.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029342774241024093132
2024-10-25
2024-11-26
Loading full text...

Full text loading...

References

  1. Mary S.J. Veeravarmal V. Thankappan P. Arumugam P. Augustine P.I. Franklin R. Anti-cancer effects of green synthesized gold nanoparticles using leaf extract of Annona muricata. L against squamous cell carcinoma cell line 15 through apoptotic pathway. Dent. Res. J. (Isfahan) 2024 21 1 14 10.4103/drj.drj_521_23 38476717
    [Google Scholar]
  2. Zhu S. Zhang F. Zhao G. Zhang X. Zhang X. Li T. Hu C. Zhu W. Li D. Trends in the global burden of oral cancer joint with attributable risk factors: Results from the global burden of disease study 2019. Oral Oncol. 2022 134 106189 10.1016/j.oraloncology.2022.106189 36208599
    [Google Scholar]
  3. Gopalakrishnan S. Pandi A. Arumugam P. Jayaseelan V.P. MicroRNAs targeting CDKN2A gene as a potential prognostic marker in head and neck squamous cell carcinoma. Mol. Biol. Res. Commun. 2024 13 1 21 27 38164368
    [Google Scholar]
  4. Avs K.R. Pandi C. Kannan B. Pandi A. Jayaseelan V.P. Arumugam P. RFC3 serves as a novel prognostic biomarker and target for head and neck squamous cell carcinoma. Clin. Oral Investig. 2023 27 11 6961 6969 10.1007/s00784‑023‑05316‑4 37861747
    [Google Scholar]
  5. Advancing cancer therapy. Nat. Cancer 2021 2 3 245 246 10.1038/s43018‑021‑00192‑x 35121963
    [Google Scholar]
  6. Naito H. Tohi Y. Sugimoto M. A narrative review of optimal treatment choices in robot-assisted partial nephrectomy focusing on indication and surgical procedure. AME Med. J. 2025 10 3 3 10.21037/amj‑23‑233
    [Google Scholar]
  7. Bertrums E.J.M. de Kanter J.K. Derks L.L.M. Verheul M. Trabut L. van Roosmalen M.J. Hasle H. Antoniou E. Reinhardt D. Dworzak M.N. Mühlegger N. van den Heuvel-Eibrink M.M. Zwaan C.M. Goemans B.F. van Boxtel R. Selective pressures of platinum compounds shape the evolution of therapy-related myeloid neoplasms. Nat. Commun. 2024 15 1 6025 10.1038/s41467‑024‑50384‑z 39019934
    [Google Scholar]
  8. Zhang L. Shi J. Zhu M.H. Huang Y. Lu Q. Sun P. Chen H.Z. Lai X. Fang C. Liposomes-enabled cancer chemoimmunotherapy. Biomaterials 2025 313 122801 10.1016/j.biomaterials.2024.122801 39236630
    [Google Scholar]
  9. Grewal A. Liu S.C-T. Palliative radiotherapy in the head and neck. Palliative Radiation Oncology. Elsevier 2024 141 154 10.1016/B978‑0‑323‑87688‑9.00021‑0
    [Google Scholar]
  10. Shanmugam R. Jayaprakasan V. Gokmen-Polar Y. Kelich S. Miller K.D. Yip-Schneider M. Cheng L. Bhat-Nakshatri P. Sledge G.W. Jr Nakshatri H. Zheng Q.H. Miller M.A. DeGrado T. Hutchins G.D. Sweeney C.J. Restoring chemotherapy and hormone therapy sensitivity by parthenolide in a xenograft hormone refractory prostate cancer model. Prostate 2006 66 14 1498 1511 10.1002/pros.20482 16921510
    [Google Scholar]
  11. Drouaud A.P. Boyarsky B. Wang Y. Antar R. Sivanesan N. Xu V.E. Whalen M.J. Novel immunotherapies and targeted molecular therapies for non-muscle invasive bladder cancer: A literature review. AME Med. J. 2025 10 4 4 10.21037/amj‑23‑222
    [Google Scholar]
  12. Ye J. Yu J. Zhao M. Zhang Y. Wang Z. Li S. Zhang B. Zhang H. Zhou T. Wang Y. Li X. He Z. Liu H. Wang Y. Galloyl-boosted gold nanorods: Unleashing personalized cancer immunotherapy potential. J. Colloid Interface Sci. 2024 678 Pt C 272 282 39298978
    [Google Scholar]
  13. Zhang L. Yu Y. Ding K. Ji C. Zhang D. Liang P. Tang B.Z. Feng G. Tumor microenvironment ameliorative and adaptive nanoparticles with photothermal-to-photodynamic switch for cancer phototherapy. Biomaterials 2025 313 122771 10.1016/j.biomaterials.2024.122771 39190940
    [Google Scholar]
  14. Tang L. Wang S. Hu J. Meng L. Zhang J. Chang Y. Ma X. Guo Y. Rational design of Au-Bi bimetallic nanozyme for NIR-II laser mediated multifunctional combined tumor therapy. Colloids Surf. B Biointerfaces 2025 245 114188 10.1016/j.colsurfb.2024.114188 39226744
    [Google Scholar]
  15. Liu Y. Wang H. Li S. Chen C. Xu L. Huang P. Liu F. Su Y. Qi M. Yu C. Zhou Y. In situ supramolecular polymerization-enhanced self-assembly of polymer vesicles for highly efficient photothermal therapy. Nat. Commun. 2020 11 1 1724 10.1038/s41467‑020‑15427‑1 32265490
    [Google Scholar]
  16. Jing X. Liu D. Zhang N. Zhao X. Wang J. Wang D. Ji W. She J. Meng L. Engineering Two-dimensional tungsten-doped molybdenum selenide transformed conformational nanoarchitectonics: Trimodal therapeutic nanoagents for enhanced synergistic Photothermal/Chemodynamic/Chemotherapy of breast carcinoma. J. Colloid Interface Sci. 2024 678 Pt C 646 657 39305631
    [Google Scholar]
  17. Songca S.P. Adjei Y. Applications of antimicrobial photodynamic therapy against bacterial biofilms. Int. J. Mol. Sci. 2022 23 6 3209 10.3390/ijms23063209 35328629
    [Google Scholar]
  18. Thakur A. Chandran B S N. Davidson K. Bedford A. Fang H. Im Y. Kanduri V. Wyatt B.C. Nemani S.K. Poliukhova V. Kumar R. Fakhraai Z. Anasori B. Step-by-step guide for synthesis and delamination of Ti3 C2 TX MXene. Small Methods 2023 7 8 e2300030 10.1002/smtd.202300030 37150839
    [Google Scholar]
  19. Chen L. Dai X. Feng W. Chen Y. Biomedical applications of MXenes: From nanomedicine to biomaterials. Acc. Mater. Res. 2022 3 8 785 798 10.1021/accountsmr.2c00025
    [Google Scholar]
  20. Zhang Q. Wang J. Yu Q. Li Q. Fan R. Li C. Fan Y. Zhao C. Cheng W. Ji P. Sheng J. Zhang C. Xie S. Henkelman G. Li H. Metal/MXene composites via in situ reduction. Nat. Synth. 2024 ••• 1 10 10.1038/s44160‑024‑00660‑z
    [Google Scholar]
  21. Balasamy S. Ganapathy D. Atchudan R. Arya S. Sundramoorthy A.K. Chitosan/MXene composite scaffolds for bone regeneration in oral cancer treatment - A review. Curr. Cancer Ther. Rev. 2024 21 10.2174/0115733947326282240924003811
    [Google Scholar]
  22. Magesh V. Sundramoorthy A.K. Ganapathy D. Atchudan R. Arya S. Alshgari R.A. Aljuwayid A.M. Palladium hydroxide (Pearlman’s catalyst) doped MXene (Ti3C2Tx) composite modified electrode for selective detection of nicotine in human sweat. Biosensors (Basel) 2022 13 1 54 10.3390/bios13010054 36671889
    [Google Scholar]
  23. Rajendran J. Sundramoorthy A.K. Ganapathy D. Atchudan R. Habila M.A. Nallaswamy D. 2D MXene/graphene nanocomposite preparation and its electrochemical performance towards the identification of nicotine level in human saliva. J. Hazard. Mater. 2022 440 129705 10.1016/j.jhazmat.2022.129705 35963090
    [Google Scholar]
  24. Facure M.H.M. Gahramanova G. Zhang D. Zhang T. Shuck C.E. Mercante L.A. Correa D.S. Gogotsi Y. All-MXene electronic tongue for neurotransmitters detection. Biosens. Bioelectron. 2024 262 116526 10.1016/j.bios.2024.116526 38954905
    [Google Scholar]
  25. Raj S.M.M. Sundramoorthy A.K. Atchudan R. Ganapathy D. Khosla A. Review—recent trends on the synthesis and different characterization tools for MXenes and their emerging applications. J. Electrochem. Soc. 2022 169 7 077501 10.1149/1945‑7111/ac7bac
    [Google Scholar]
  26. Sridharan G. Atchudan R. Magesh V. Arya S. Ganapathy D. Nallaswamy D. Sundramoorthy A.K. Advanced electrocatalytic materials based biosensors for cancer cell detection – A review. Electroanalysis 2023 35 9 e202300093 10.1002/elan.202300093
    [Google Scholar]
  27. Sundramoorthy A.K. Atchudan R. Arya S. Utilization of Raman spectroscopy in biochemical fingerprint analysis for oral cancer screening and diagnosis. Oral Oncol. 2022 135 106192 10.1016/j.oraloncology.2022.106192 36270203
    [Google Scholar]
  28. Molaei M.J. Two-dimensional (2D) materials beyond graphene in cancer drug delivery, photothermal and photodynamic therapy, recent advances and challenges ahead: A review. J. Drug Deliv. Sci. Technol. 2021 61 101830 10.1016/j.jddst.2020.101830
    [Google Scholar]
  29. Self A. Farell M. Samineni L. Kumar M. Gomez E.W. 2D materials for combination therapy to address challenges in the treatment of cancer. Adv. NanoBiomed Res. 2023 3 12 2300070 10.1002/anbr.202300070
    [Google Scholar]
  30. Singh B. Bahadur R. Maske P. Gandhi M. Singh D. Srivastava R. Preclinical safety assessment of red emissive gold nanocluster conjugated crumpled MXene nanosheets: A dynamic duo for image-guided photothermal therapy. Nanoscale 2023 15 6 2932 2947 10.1039/D2NR05773E 36692237
    [Google Scholar]
  31. Ju X. Kong J. Qi G. Hou S. Diao X. Dong S. Jin Y. A wearable electrostimulation-augmented ionic-gel photothermal patch doped with MXene for skin tumor treatment. Nat. Commun. 2024 15 1 762 10.1038/s41467‑024‑45070‑z 38278810
    [Google Scholar]
  32. Luo R. Li F. Wang Y. Zou H. Shang J. Fan Y. Liu H. Xu Z. Li R. Liu H. MXene-modified 3D printed scaffold for photothermal therapy and facilitation of oral mucosal wound reconstruction. Mater. Des. 2023 227 111731 10.1016/j.matdes.2023.111731
    [Google Scholar]
  33. Li F. Yan Y. Wang Y. Fan Y. Zou H. Liu H. Luo R. Li R. Liu H. A bifunctional MXene-modified scaffold for photothermal therapy and maxillofacial tissue regeneration. Regen. Biomater. 2021 8 rbab057 10.1093/rb/rbab057
    [Google Scholar]
  34. Damiri F. Rahman M.H. Zehravi M. Awaji A.A. Nasrullah M.Z. Gad H.A. Bani-Fwaz M.Z. Varma R.S. Germoush M.O. Al-malky H.S. Sayed A.A. Rojekar S. Abdel-Daim M.M. Berrada M. MXene (Ti3C2Tx)-embedded nanocomposite hydrogels for biomedical applications: A review. Materials (Basel) 2022 15 5 1666 10.3390/ma15051666 35268907
    [Google Scholar]
  35. An D. Wu X. Gong Y. Li W. Dai G. Lu X. Yu L. Ren W.X. Qiu M. Shu J. Manganese-functionalized MXene theranostic nanoplatform for MRI-guided synergetic photothermal/chemodynamic therapy of cancer. Nanophotonics 2022 11 22 5177 5188 10.1515/nanoph‑2022‑0533
    [Google Scholar]
  36. Kulkarni S. Soman S. Navti P.D. Roy A.A. Nikam A.N. Vineeth P. Kulkarni J. Shirur K.S. Pandey A. George S.D. Mutalik S. Nano-innovations in cancer therapy: The unparalleled potential of MXene conjugates. Materials (Basel) 2024 17 6 1423 10.3390/ma17061423 38541577
    [Google Scholar]
  37. White K.E. Chu Y.Z. Gani G. Ippolito S. Barr K.K. Thomas J.C. Weber-Bargioni A. Lau K.C. Gogotsi Y. Weiss P.S. Atomic-scale investigations of Ti3C2T MXene surfaces. Matter 2024 7 7 2609 2618 10.1016/j.matt.2024.06.025
    [Google Scholar]
  38. Zhang D. Hantanasirisakul K. Gogotsi Y. MXenes’ optical and optoelectronic properties and related applications. Transition Metal Carbides and Nitrides (MXenes). Handbook 2024 429 452 10.1002/9781119869528.ch17
    [Google Scholar]
  39. Sfeir A. Shuck C.E. Fadel A. Marinova M. Vezin H. Dacquin J.P. Gogotsi Y. Royer S. Laassiri S. Unlocking the potential of MXene in catalysis: Decorated Mo2CTx catalyst for ammonia synthesis under mild conditions. J. Am. Chem. Soc. 2024 146 29 20033 20044 10.1021/jacs.4c03875 38996197
    [Google Scholar]
  40. Shurbaji S. Manaph N.P.A. Ltaief S.M. Al-Shammari A.R. Elzatahry A. Yalcin H.C. Characterization of MXene as a cancer photothermal agent under physiological conditions. Front. Nanotechnol. 2021 3 689718 10.3389/fnano.2021.689718
    [Google Scholar]
/content/journals/mns/10.2174/0118764029342774241024093132
Loading
/content/journals/mns/10.2174/0118764029342774241024093132
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: 2D nanomaterials ; photothermal therapy ; MXene ; scaffolds
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test