Skip to content
2000
Volume 16, Issue 1
  • ISSN: 1876-4029
  • E-ISSN: 1876-4037

Abstract

Background: Gastric irritation and kidney problems occur due to excess ascorbic acid content, whereas the lack of ascorbic acid in the human body leads to poor wound healing, muscle degeneration, and anemia. Objectives: Herein, we report the development of an electrochemical sensor for the detection of ascorbic acid using poly-thionine/ graphene (P-Th/Gr) modified glassy carbon electrode (GCE) in 0.1 M phosphate buffer solution (PBS) (pH 7.4). Electrostatically fused graphene affixed with poly-thionine was successfully illustrated for effective voltammetric sensing of ascorbic acid. Methodology: FE-SEM indicated the blended edge of a 2D graphene sheet with a deposited thin layer of polymer, which confirmed the formation of a poly-thionine/graphene composite. The cyclic voltammetry (CV) technique was utilized for the electrochemical assay of ascorbic acid (AsA, Vitamin C). Results: With the increased concentrations of AsA, the oxidation peak current of ascorbic acid increased at 0.0 V, and the overpotential showed a decrease compared to bare GCE. The effect of scan rate on cyclic voltammograms was recorded with 500 μM of ascorbic acid from 10 mV/s to 250 mV/s, which indicated that AsA oxidation is a diffusion-controlled process on poly-thionine/ graphene-modified electrode. Conclusion: It was concluded that a poly-thionine/graphene composite-based sensor could be useful for the determination of ascorbic acid in various biological samples.

Loading

Article metrics loading...

/content/journals/mns/10.2174/0118764029290865240209072023
2024-03-01
2025-05-23
Loading full text...

Full text loading...

/content/journals/mns/10.2174/0118764029290865240209072023
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test