Skip to content
2000
image of Research on Pole-climbing Robots that Can Perform Multi-degree-of-freedom Motion and Working at the Top of Distribution Network Poles

Abstract

Background

In order to complete power maintenance, equipment renewal and other loss reduction work and reduce customer outage time at the same time, live electrical work has become a necessary means. Pole-climbing robots, as an important auxiliary tool for power-carrying operations, frequently appear in papers and patents.

Objective

The pole climbing robot is designed to work at any position in the working space with electric distribution pole, effectively and safely replacing manual work.

Methods

Based on the physical parameters of the cement utility pole and the range of space for live electrical work, the functional relationships are established between the structural parameters of the robot and the kinematic and dynamical models, and the optimal range of parameters is solved.

Results

The robot can rotate and climb around the pole with five steering angles: 0°, 22.5°, 45°, 67.5° and 90°. The control insulated operating rod can transport special tools to any station within 1m radius of the distribution pole for live work. It has a maximum load of 11kg and a maximum climbing speed of 33.6mm/s.

Conclusion

The pole-climbing robot can climb cement utility pole, manipulate the insulated operating lever it carries, and transport special tools to the workstation on the cable for carrying out live electrical work.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976355629250108052918
2025-01-27
2025-05-10
Loading full text...

Full text loading...

References

  1. Huang X. Ouyang S. Ma S. Line loss allocation method considering the contribution rate of thedistributed generation to distribution network. Elect. Measur. Instrum. 2019 56 18 16 24
    [Google Scholar]
  2. Fu X. Su W. Ge C. Bypass operation combined with short-bar insulation bridge operation method. International Conference on Intelligent Computing, Automation and Systems (ICICAS) Chongqing, China, 2020, pp. 322-326, 10.1109/ICICAS51530.2020.00073
    [Google Scholar]
  3. Akinfiev T. Armada M. Prieto M. Uquillas M. Concerning a technique for increasing stability of climbing robots. J. Intell. Robot. Syst. 2000 27 1/2 195 209 10.1023/A:1008158332368
    [Google Scholar]
  4. Elkmann N. Felsch T. Sack M. Böhme T. Hortig J. Saenz J. Modular climbing robot for service‐sector applications. Ind. Rob. 1999 26 6 460 465 10.1108/01439919910296692
    [Google Scholar]
  5. Sadeqi A. Moradi H. Ahmadabadi M.N. A human-inspired pole climbing robot 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems Nice, France, 2008, pp. 4199-4199, 10.1109/IROS.2008.4651254
    [Google Scholar]
  6. Tavakoli M. Marques L. De Almeida A.T. Self calibration of step-by-step based climbing robots. 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems France, 2008, pp. 4199-4199 10.1109/IROS.2009.5354746
    [Google Scholar]
  7. Liu XL Zhao SP Yu DP Liu XY Pylon-Climber: A novel climbing assistive robot for pylon maintenance[J]. Industrial robot-The international journal of robotics research and application. 2017 44 1 38 48 10.1108/IR‑06‑2016‑0172
    [Google Scholar]
  8. Polchankajorn P. Maneewarn T. Effective parameters for helical pole climbing of the wheel-based modular snake robot. 2011 5th International Conference on Automation, Robotics and Applications. New Zealand, 2011, pp. 232-237 10.1109/ICARA.2011.6144887
    [Google Scholar]
  9. Yisheng G. Li J. Haifei Z. Xuefeng Z. Climbot: A modular bio-inspired biped climbing robot. 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems San Francisco, CA, USA, 2011, pp. 1473-1478, 10.1109/IROS.2011.6094406
    [Google Scholar]
  10. Lau S.C. Othman W a F W Bakar E A. Development of slider-crank based pole climbing robot. 2013 IEEE International Conference on Control System, Computing and Engineering 2013 471 476 10.1109/ICCSCE.2013.6720011
    [Google Scholar]
  11. Long C. Xuan Y. Zhenshan B. Kai H. Teleoperation snake robots with panorama vision. 2018 11th International Workshop on Human Friendly Robotics. Malaysia, 2013, pp. 471-476, 10.1109/HFR.2018.8633487
    [Google Scholar]
  12. Weiyang L. Shichao G. Yan H. Yisheng G. Jianyu Y. Haifei Z. Pole detection for autonomous gripping of biped climbing robots. 2019 IEEE International Conference on Real-time Computing and Robotics Russia, 2019, pp. 834-839, 10.1109/RCAR47638.2019.9044111
    [Google Scholar]
  13. Manjia S. Yu Q. Yisheng G. Haifei Z. Zhi L. Climbot-omega: A soft robot with novel grippers and rigid-compliantly constrained body for climbing on various poles. 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems Prague, Czech Republic, 2021, pp. 4975-4981, 10.1109/IROS51168.2021.9636566
    [Google Scholar]
  14. Song Y. Mao Y. Li Z. A comprehensive survey of pole climbing robots. 2022 IEEE International Conference on Mechatronics and Automation Guilin, Guangxi, China, 2022, pp. 870-875, 10.1109/ICMA54519.2022.9855909
    [Google Scholar]
  15. Balaguer C. Gimenez A. Jardon A. Climbing Robots? Mobility for Inspection and Maintenance of 3D Complex Environments. Auton. Robots 2005 18 2 157 169 10.1007/s10514‑005‑0723‑0
    [Google Scholar]
  16. Huang L. Chen Y. Liu M. Design of a double claw pole-climbing robot. China Automation Congress. 2023 2023 2000 2004 10.1109/CAC59555.2023.10451800
    [Google Scholar]
  17. Zhu H. Guan Y. Wu W. Chen X. Zhou X. Zhang H. A binary approximating method for graspable region determination of biped climbing robots. Adv. Robot. 2014 28 21 1405 1418 10.1080/01691864.2014.959051
    [Google Scholar]
  18. Fu X.J. Sun Z.Y. Zhao R. Yin J.C. The structure design of gait pole climbing robot. Appl. Mech. Mater. 2015 740 171 174 10.4028/www.scientific.net/AMM.740.171
    [Google Scholar]
  19. Zhang T. Yang X. Zhao H. Design and analysis of small pole-climbing robot. CSAA/IET International Conference on Aircraft Utility Systems Guiyang, 2018, pp. 97-102, 10.1049/cp.2018.0326
    [Google Scholar]
  20. Ye C. Zang Y. Yu S. Jiang C. Structure design and optimization of ground moving and pole climbing inspection robot. Assem. Autom. 2022 42 2 278 292 10.1108/AA‑12‑2021‑0168
    [Google Scholar]
  21. Tavakoli M. Marques L. de Almeida A.T. A low-cost approach for self-calibration of climbing robots. Robotica 2011 29 1 23 34 10.1017/S0263574710000676
    [Google Scholar]
  22. Tavakoli M. Marques L. de Almeida A.T. 3DCLIMBER: Climbing and manipulation over 3D structures. Mechatronics 2011 21 1 48 62 10.1016/j.mechatronics.2010.08.006
    [Google Scholar]
  23. Jun Xian L Abu-Johan K A Kadir N I N Othman W a F W Wahab A a A Alhady S S N Development of a simple pole climbing robot. Intelligent Manufacturing and Mechatronics Proceedings of SympoSIMM 2020 Lecture Notes in Mechanical Engineering. 2021 227 237 10.1007/978‑981‑16‑0866‑7_18
    [Google Scholar]
  24. Du Q. Li Y. Liu S. Design of a micro pole-climbing robot. Int. J. Adv. Robot. Syst. 2019 16 3
    [Google Scholar]
  25. Du Q. Lu X. Wang Y. Liu S. The obstacle-surmounting analysis of a pole-climbing robot. Int. J. Adv. Robot. Syst. 2020 17 6
    [Google Scholar]
  26. Khan S. Prabhu S. Design and fabrication of wheeled pole climbing robot with high payload capacity. IOP Conf. Series Mater. Sci. Eng. 2018 402 012021 10.1088/1757‑899X/402/1/012021
    [Google Scholar]
  27. Tavakoli M. Viegas C. 14 - Bio-inspired climbing robots. Biomimetic Technologies. Ngo T.D. 2015 301 320 10.1016/B978‑0‑08‑100249‑0.00014‑8
    [Google Scholar]
  28. Haynes G.C. Khripin A. Lynch G. Amory J. Rapid pole climbing with a quadrupedal robot. 2009 IEEE International Conference on Robotics and Automation (ICRA) Kobe, Japan, 2009, pp. 2767-2772, 10.1109/ROBOT.2009.5152830
    [Google Scholar]
  29. Palmer L.R. III Diller E. Quinn R.D. Toward gravity-Independent climbing using a biologically inspired distributed inward gripping strategy. IEEE/ASME Trans. Mechatron. 2015 20 2 631 640 10.1109/TMECH.2014.2315762
    [Google Scholar]
  30. Palmer L.R. Diller E.D. Quinn R.D. Toward a rapid and robust attachment strategy for vertical climbing. IEEE International Conference on Robotics and Automation (ICRA) AK, USA, 2010, pp. 2810-2815, 10.1109/ROBOT.2010.5509680
    [Google Scholar]
  31. Fauroux J.C. Morillon J. Design of a climbing robot for cylindro‐conic poles based on rolling self‐locking. Ind. Rob. 2010 37 3 287 292 10.1108/01439911011037695
    [Google Scholar]
  32. Ahmadabadi M.N. Moradi H. Sadeghi A. Madani A. Bio-inspired climbing robots. 2010 1st International Conference on Applied Robotics for the Power Industry (CARPI 2010) 2010 1 6 10.1016/B978‑0‑08‑100249‑0.00014‑8
    [Google Scholar]
  33. Gui P.F. Tang L.Q. Mukhopadhyay S. Anti-falling Tree Climbing Mechanism Optimization. 2nd Asia-Pacific Conference on Intelligent Robot Systems (ACIRS) Wuhan, China, 2017, pp. 284-288, 10.1109/ACIRS.2017.7986109
    [Google Scholar]
  34. Kim JW Yoo SG Hong JY Climbing Robot Platform US2022120377A1[P] 2021 07 29
  35. University of Leeds A climbing robot: GB202205312D0 [P]. 2022 04 11
  36. Wang Jidai Sun Aiqin Wang Zhiwei Climbing Robot traveling along overhead line US2021091544A1 [P]. 2018 12 25
  37. Jongha Hwang Wall Climbing Robot KR20210051964A [P]. 2019 10 31
  38. Patil Swati Snehar Karok Electric Pole Climbing Robot IN2013MU02944A[P]. 2013
  39. Tang Dedong Yu Zhuowen Xin Lv An enveloping pole climbing robot CN115817667A [P]. 2022 11 10
  40. Zhen Jia Jia Dezeng Climbing robot CN210502954U [P]. 2019 08 29
  41. Zhen Jia Jia Dezeng The invention relates to an adaptive pole diameter climbing robot CN109955924B [P]. 2017 12 22
  42. Zheng Tianjiang Qian Shuwen Yi Wang Climbing robot CN114313045A [P] 2021 12 23
  43. Zhou Yangli Li Shilian Yue Jixiang Cable-Climbing Robot US17923614 [P]. 2019 07 27
  44. Fu Han-Kuei Vacuum Suction Wall-Climbing Robot US20230234654A1[P]. 2023 07 27
  45. Ning Ding Zheng Zhenliang Song Junlin Cable-Climbing Robot US17923614 [P]. 2023 06 15
  46. Lau S.C. Development of slider-Crank based pole climbing robot. IEEE International Conference on Control System, Computing and Engineering (ICCSCE) Penang, Malaysia, 2013, pp. 471-476, 2013 10.1109/ICCSCE.2013.6720011
    [Google Scholar]
  47. Xuefeng M. Liu Y. Junkao L. Jie D. Crabbot: A pole-climbing robot driven by piezoelectric stack. IEEE Trans. Robot. 2022 38 2 765 778 10.1109/TRO.2021.3102418
    [Google Scholar]
  48. Das M. Agrawal A. Sonone A. Gupta R. Developing a Bioinspired Pole Climbing Robot. International Conference on Robotics - Current Trends and Future Challenges (RCTFC). 2016. Sastra Univ, Thanjavur, INDIA. Thanjavur, 2016, pp. 1-6, 10.1109/RCTFC.2016.7893400
    [Google Scholar]
  49. Xu F. Dai S. Jiang Q. Wang X. Developing a climbing robot for repairing cables of cable-stayed bridges. Autom. Construct. 2021 129 103807 10.1016/j.autcon.2021.103807
    [Google Scholar]
  50. Tavakoli M. Viegas C. Marques L. Pires J.N. de Almeida A.T. OmniClimbers: Omni-directional magnetic wheeled climbing robots for inspection of ferromagnetic structures. Robot. Auton. Syst. 2013 61 9 997 1007 10.1016/j.robot.2013.05.005
    [Google Scholar]
  51. Chen W. Gu S. Zhu L. Zhang H. Zhu H. Guan Y. Representation of truss-style structures for autonomous climbing of biped pole-climbing robots. Robot. Auton. Syst. 2018 101 126 137 10.1016/j.robot.2018.01.002
    [Google Scholar]
  52. Jiang L. Guan Y. Zhou X. Yang T. Su M. Wu H. Grasping performance analysis of a biped-pole-climbing robot. Jixie Gongcheng Xuebao 2016 52 3 34 40 10.3901/JME.2016.03.034
    [Google Scholar]
  53. Cao L. Zhang S. Design of power tower climbing robot. J. Phys. Conf. Ser. 2023 2658 1 012001 10.1088/1742‑6596/2658/1/012001
    [Google Scholar]
  54. Khairam H. Choong Y.M. Ismadi N.S.N. Othman W A F.W. Wahab A A A. Alhady S.S.N. Design and development of a low-cost pole climbing robot using Arduino Mega. J. Phys. Conf. Ser. 2021 1969 1 012008 10.1088/1742‑6596/1969/1/012008
    [Google Scholar]
  55. Bin Mohaspa A.M. Bin Idris N.F. Ern E.S.Y. Othman W.A.F.W. Inchworm-inspired semi-autonomous pole-climbing robot. Proceedings of the 11th International Conference on Robotics, Vision, Signal Processing and Power Applications: Enhancing Research and Innovation through the Fourth Industrial Revolution Lecture Notes in Electrical Engineering 2022 1047 1051 10.1007/978‑981‑16‑8129‑5_160
    [Google Scholar]
  56. Md-Yusoff M.N.S. Cheah K.B. Mohamad-Wazir A.R. Othman W a F W Alhady S S N Wahab A a A. Steel pipe climbing robot development. Proceedings of the 11th International Conference on Robotics, Vision, Signal Processing and Power Applications: Enhancing Research and Innovation through the Fourth Industrial Revolution Lecture Notes in Electrical Engineering 2022 1071 1076 10.1007/978‑981‑16‑8129‑5_164
    [Google Scholar]
  57. Jairan M.H. Leong J.Y.J. Mohd-Foazi A.F. Development of a mini pole-Climbing robot. Proceedings of the 12th National Technical Seminar on Unmanned System Technology 2020: NUSYS'20 Lecture Notes in Electrical Engineering. 2022 40 7 2255 2274
    [Google Scholar]
  58. Lixiu M. Boxue T. Jin S. Wei L. Xianming S. The study of pole-climbing robot. Proceedings of the 2010 International Conference on Electrical and Control Engineering Wuhan, China, 2010, pp. 2451-2454, 10.1109/iCECE.2010.606
    [Google Scholar]
  59. Liu Y. Yu Y. Wang D. Yang S. Liu J. Mechatronics design of self-adaptive under-actuated climbing robot for pole climbing and ground moving. Robotica 2022 40 7 2255 2274 10.1017/S0263574721001636
    [Google Scholar]
  60. Zhou XF Jiang L Guan YS Zhu HF Energy-optimal motion planning of a biped pole-climbing robot with kinodynamic constraints [J]. Industrial robot-International journal of robotics research and application. 2018 45 3 343 353
    [Google Scholar]
  61. Dwivedi A Siddiqui D Yeotkar P Khandelwal R. Pole climbing robot with controlled gripper mechanism[J]. Sadhana-Academy Proceedings in Engineering Sciences, 2024 49 1
    [Google Scholar]
  62. Megalingam R.K. Reddy S.V. Sriharsha G. Teja P.S. Kumar K.S. Gopal P. Study and development of android controlled wireless pole climbing robot. 2015 IEEE International WIE Conference on Electrical and Computer Engineering Dhaka, Bangladesh, 2015, pp. 439-442 10.1109/WIECON‑ECE.2015.7443962
    [Google Scholar]
  63. Transeth A.A. Pettersen K.Y. Liljebäck P. A survey on snake robot modeling and locomotion. Robotica 2009 27 7 999 1015 10.1017/S0263574709005414
    [Google Scholar]
  64. Libby T. Tail assisted pitch control in a lizard, robot, and dinosaur. Integr. Comp. Biol. 2012 52 E106 E106
    [Google Scholar]
  65. Xu F. Hu J. Wang X. Jiang G. Helix cable-Detecting robot for cable-stayed bridge: design and analysis. Int. J. Robot. Autom. 2014 29 4 406 414 10.2316/Journal.206.2014.4.206‑4213
    [Google Scholar]
  66. Zheng Z. Zhang W. Fu X. Hazken S. Hu X. Chen H. Luo J. Ding N. CCRobot-IV: An obstacle-free split-type quad-ducted propeller-driven bridge stay cable-climbing robot. IEEE Robot. Autom. Lett. 2022 7 4 11751 11758 10.1109/LRA.2021.3099872
    [Google Scholar]
  67. Schmidt D. Berns K. Climbing robots for maintenance and inspections of vertical structures—A survey of design aspects and technologies. Robot. Auton. Syst. 2013 61 12 1288 1305 10.1016/j.robot.2013.09.002
    [Google Scholar]
  68. Tavakoli M. Marques L. de Almeida A.T. Development of an industrial pipeline inspection robot. Ind. Rob. 2010 37 3 309 322 10.1108/01439911011037721
    [Google Scholar]
  69. Tavakoli M. Zakerzadeh M.R. Vossoughi G.R. Bagheri S. A hybrid pole climbing and manipulating robot with minimum DOFs for construction and service applications. Ind. Rob. 2005 32 2 171 178 10.1108/01439910510582309
    [Google Scholar]
  70. Xu F.Y. Shen J.J. Jiang G.P. Kinematic and Dynamic Analysis of a Cable-climbing Robot. Int. J. Adv. Robot. Syst. 2015 ••• 12
    [Google Scholar]
  71. Sadeghi A. Moradi H. Ahmadabadi M.N. Analysis, simulation, and implementation of a human-inspired pole climbing robot. Robotica 2012 30 2 279 287 10.1017/S0263574711000579
    [Google Scholar]
  72. Aracil R. Saltarén R. Reinoso O. Parallel robots for autonomous climbing along tubular structures. Robot. Auton. Syst. 2003 42 2 125 134 10.1016/S0921‑8890(02)00360‑3
    [Google Scholar]
  73. Wright C. Buchan A. Brown B. Geist J. Design and architecture of the unified modular snake robot. IEEE International Conference on Robotics and Automation (ICRA) Saint Paul, MN, USA, 2012, pp. 4347-4354, 10.1109/ICRA.2012.6225255
    [Google Scholar]
  74. Tavakoli M. Lopes P. Sgrigna L. Viegas C. Motion control of an omnidirectional climbing robot based on dead reckoning method. Mechatronics 2015 30 94 106 10.1016/j.mechatronics.2015.06.003
    [Google Scholar]
  75. Wu Shaolei Yu Feng Song Ling Design and architecture of the unified modular snake robot. 2012 IEEE International Conference on Robotics and Automation. Saint Paul, MN, USA, 2012, pp. 4347-4354. 10.1109/ICRA.2012.6225255
    [Google Scholar]
/content/journals/meng/10.2174/0122127976355629250108052918
Loading
/content/journals/meng/10.2174/0122127976355629250108052918
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: workspace ; live electrical work ; power grid ; Pole-climbing robot ; multi-freedom
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test