Skip to content
2000
image of Experimentally Investigating the Potential of Iso-Stoichiometric GEM Blends as a Drop-in Replacement for E50 in SI Engines

Abstract

Background

Research on alternative fuels for internal combustion engines is crucial due to climate change and energy security concerns. Ethanol-blended gasoline has been a popular alternative fuel, but biomass limitations restrict its widespread use. Methanol offers a solution as it can be produced from non-food sources, extending ethanol's availability.

Objective

This study explores a ternary fuel blend consisting of gasoline, ethanol, and methanol as an alternative to binary gasoline-ethanol blend. The objective is to investigate if the iso-stoichiometric ternary blend offers equivalent fuel properties to E50 (Ethanol 50%, Gasoline 50% (v/v)) gasohol while potentially enhancing engine performance, reducing emissions, and improving combustion characteristics.

Methods

A single-cylinder, four-stroke, port fuel injection spark ignition engine was used. The engine was tested with three fuels: pure gasoline, E50 blend, and an equivalent iso-stoichiometric GEM blends. Engine tests were conducted at constant load with varying engine speeds. Performance, emission, and combustion parameters were experimentally measured and compared across all fuels.

Results

E50 and its equivalent blends improved brake thermal efficiency but increased brake specific fuel consumption compared to gasoline. It significantly reduced unburned hydrocarbon and carbon monoxide emissions but slightly increased nitrogen oxide emissions.

Conclusion

Formulated E50 equivalent blends have identical air to fuel ratio, lower heating values as conventional binary E50 gasoline-ethanol blends. The study suggests that iso-stoichiometric GEM blends have the potential to be a viable alternative drop-in fuel for E50 in internal combustion engines. The future advancements in GEM blends, particularly in optimizing ratios, could lead to patentable inventions.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976325325240916045658
2024-10-11
2024-11-23
Loading full text...

Full text loading...

References

  1. Statistical Review of World Energy. >Energy Institute 2023
    [Google Scholar]
  2. Raimi D. Zhu Y. Newell R.G. Prest B.C. Global Energy Outlook 2024: Peaks or Plateaus. 2024 Available from: https://www.rff.org/publications/reports/global-energy-outlook-2024/
  3. Yusuf A.A. Inambao F.L. Progress in alcohol-gasoline blends and their effects on the performance and emissions in SI engines under different operating conditions. Int J Ambient Energy. 2021 42 4 465 481 10.1080/01430750.2018.1531261
    [Google Scholar]
  4. Awad O.I. Mamat R. Ali O.M. Sidik N.A.C. Yusaf T. Kadirgama K. Kettner M. Alcohol and ether as alternative fuels in spark ignition engine: A review. Renew. Sustain. Energy Rev. 2018 82 2586 2605 10.1016/j.rser.2017.09.074
    [Google Scholar]
  5. Thakur A.K. Kaviti A.K. Mehra R. Mer K.K.S. Progress in performance analysis of ethanol-gasoline blends on SI engine. Renew. Sustain. Energy Rev. 2017 69 324 340 10.1016/j.rser.2016.11.056
    [Google Scholar]
  6. Wang C. Li Y. Xu C. Badawy T. Sahu A. Jiang C. Methanol as an octane booster for gasoline fuels. Fuel 2019 248 76 84 10.1016/j.fuel.2019.02.128
    [Google Scholar]
  7. Verhelst S. Turner J.W.G. Sileghem L. Vancoillie J. Methanol as a fuel for internal combustion engines. Pror. Energy Combust. Sci. 2019 70 43 88 10.1016/j.pecs.2018.10.001
    [Google Scholar]
  8. Topgül T. Yücesu H.S. Çinar C. Koca A. The effects of ethanol–unleaded gasoline blends and ignition timing on engine performance and exhaust emissions. Renew. Energy 2006 31 15 2534 2542 10.1016/j.renene.2006.01.004
    [Google Scholar]
  9. Bayraktar H. Experimental and theoretical investigation of using gasoline–ethanol blends in spark-ignition engines. Renew. Energy 2005 30 11 1733 1747 10.1016/j.renene.2005.01.006
    [Google Scholar]
  10. Jia L.W. Shen M.Q. Wang J. Lin M.Q. Influence of ethanol–gasoline blended fuel on emission characteristics from a four-stroke motorcycle engine. J. Hazard. Mater. 2005 123 1-3 29 34 10.1016/j.jhazmat.2005.03.046 15923082
    [Google Scholar]
  11. Hsieh W.D. Chen R.H. Wu T.L. Lin T.H. Engine performance and pollutant emission of an SI engine using ethanol–gasoline blended fuels. Atmos. Environ. 2002 36 3 403 410 10.1016/S1352‑2310(01)00508‑8
    [Google Scholar]
  12. Hu Z. Pu G. Fang F. Wang C. Economics, environment, and energy life cycle assessment of automobiles fueled by bio-ethanol blends in China. Renew. Energy 2004 29 14 2183 2192 10.1016/j.renene.2004.03.014
    [Google Scholar]
  13. Aleiferis P.G. Serras-Pereira J. Richardson D. Characterisation of flame development with ethanol, butanol, iso-octane, gasoline and methane in a direct-injection spark-ignition engine. Fuel 2013 109 256 278 10.1016/j.fuel.2012.12.088
    [Google Scholar]
  14. Zeng W. Xu M. Zhang G. Zhang Y. Cleary D.J. Atomization and vaporization for flash-boiling multi-hole sprays with alcohol fuels. Fuel 2012 95 287 297 10.1016/j.fuel.2011.08.048
    [Google Scholar]
  15. Takeshita E.V. Rezende R.V.P. de Souza S.M.A.G.U. de Souza A.A.U. Influence of solvent addition on the physicochemical properties of Brazilian gasoline. Fuel 2008 87 10-11 2168 2177 10.1016/j.fuel.2007.11.003
    [Google Scholar]
  16. French R. Malone P. Phase equilibria of ethanol fuel blends. Fluid Phase Equilib. 2005 228-229 27 40 10.1016/j.fluid.2004.09.012
    [Google Scholar]
  17. Balabin R.M. Syunyaev R.Z. Karpov S.A. Quantitative measurement of ethanol distribution over Fractions of ethanol− gasoline fuel. Energy Fuels 2007 21 4 2460 2465 10.1021/ef070081l
    [Google Scholar]
  18. Agarwal A.K. Singh A.P. Maurya R.K. Evolution, challenges and path forward for low temperature combustion engines. Pror. Energy Combust. Sci. 2017 61 1 56 10.1016/j.pecs.2017.02.001
    [Google Scholar]
  19. Dagaut P. Togbé C. Experimental and modeling study of the kinetics of oxidation of ethanol-n-heptane mixtures in a jet-stirred reactor. Fuel 2010 89 2 280 286 10.1016/j.fuel.2009.06.035
    [Google Scholar]
  20. Barraza-Botet C.L. Wooldridge M.S. Combustion chemistry of iso-octane/ethanol blends: Effects on ignition and reaction pathways. Combust. Flame 2018 188 324 336 10.1016/j.combustflame.2017.10.011
    [Google Scholar]
  21. Badra J. AlRamadan A.S. Sarathy S.M. Optimization of the octane response of gasoline/ethanol blends. Appl. Energy 2017 203 778 793 10.1016/j.apenergy.2017.06.084
    [Google Scholar]
  22. Yuan H. Yang Y. Brear M.J. Foong T.M. Anderson J.E. Optimal octane number correlations for mixtures of toluene reference fuels (TRFs) and ethanol. Fuel 2017 188 408 417 10.1016/j.fuel.2016.10.042
    [Google Scholar]
  23. Singh E. Tingas E.A. Goussis D. Im H.G. Sarathy S.M. Chemical ignition characteristics of ethanol blending with primary reference fuels. Energy Fuels 2019 33 10 10185 10196 10.1021/acs.energyfuels.9b01423
    [Google Scholar]
  24. Ghadikolaei M.A. Effect of alcohol blend and fumigation on regulated and unregulated emissions of IC engines—A review. Renew. Sustain. Energy Rev. 2016 57 1440 1495 10.1016/j.rser.2015.12.128
    [Google Scholar]
  25. Li L. Ge Y. Wang M. Peng Z. Song Y. Zhang L. Yuan W. Exhaust and evaporative emissions from motorcycles fueled with ethanol gasoline blends. Sci. Total Environ. 2015 502 627 631 10.1016/j.scitotenv.2014.09.068 25302450
    [Google Scholar]
  26. Jin D. Choi K. Myung C.L. Lim Y. Lee J. Park S. The impact of various ethanol-gasoline blends on particulates and unregulated gaseous emissions characteristics from a spark ignition direct injection (SIDI) passenger vehicle. Fuel 2017 209 702 712 10.1016/j.fuel.2017.08.063
    [Google Scholar]
  27. Zhang F. Wang J. Tian D. Wang J.X. Shuai S.J. Research on unregulated emissions from an alcohols-gasoline blend vehicle using FTIR, HPLC and GC-MS measuring methods. SAE Int. J. Engines 2013 6 2 1126 1137 10.4271/2013‑01‑1345
    [Google Scholar]
  28. Zhao L. Wang X. Wang D. Su X. Investigation of the effects of lean mixtures on combustion and particulate emissions in a DISI engine fueled with bioethanol-gasoline blends. Fuel 2020 260 116096 10.1016/j.fuel.2019.116096
    [Google Scholar]
  29. Sakthivel P. Subramanian K.A. Mathai R. Effects of different compression ratios and spark timings on performance and emissions of a two-wheeler with 30% ethanol-gasoline blend (E30). Fuel 2020 277 118113 10.1016/j.fuel.2020.118113
    [Google Scholar]
  30. Edwin Geo V. Jesu Godwin D. Thiyagarajan S. Saravanan C.G. Aloui F. Effect of higher and lower order alcohol blending with gasoline on performance, emission and combustion characteristics of SI engine. Fuel 2019 256 115806 10.1016/j.fuel.2019.115806
    [Google Scholar]
  31. Yusoff M.N.A.M. Zulkifli N.W.M. Masjuki H.H. Harith M.H. Syahir A.Z. Khuong L.S. Zaharin M.S.M. Alabdulkarem A. Comparative assessment of ethanol and isobutanol addition in gasoline on engine performance and exhaust emissions. J. Clean. Prod. 2018 190 483 495 10.1016/j.jclepro.2018.04.183
    [Google Scholar]
  32. Li Y. Gong J. Deng Y. Yuan W. Fu J. Zhang B. Experimental comparative study on combustion, performance and emissions characteristics of methanol, ethanol and butanol in a spark ignition engine. Appl. Therm. Eng. 2017 115 53 63 10.1016/j.applthermaleng.2016.12.037
    [Google Scholar]
  33. Agarwal A.K. Karare H. Dhar A. Combustion, performance, emissions and particulate characterization of a methanol–gasoline blend (gasohol) fuelled medium duty spark ignition transportation engine. Fuel Process. Technol. 2014 121 16 24 10.1016/j.fuproc.2013.12.014
    [Google Scholar]
  34. Turner J. Pearson R. Purvis R. Dekker E. Johansson K. GEM ternary blends: Removing the biomass limit by using iso-stoichiometric mixtures of gasoline, ethanol and methanol. SAE Tech. Pap. 2011
    [Google Scholar]
  35. Sileghem L. Coppens A. Casier B. Vancoillie J. Verhelst S. Performance and emissions of iso-stoichiometric ternary GEM blends on a production SI engine. Fuel 2014 117 286 293 10.1016/j.fuel.2013.09.043
    [Google Scholar]
  36. Chaichan M.T. Gasoline, ethanol and methanol (GEM) ternary blends utilization as an alternative to conventional Iraqi gasoline to suppress emitted sulfur and lead components to environment. Al-Khwarizmi Engineering Journal. 2016 12 3 38 51
    [Google Scholar]
  37. Turner J.W.G. Pearson R.J. Bell A. de Goede S. Woolard C. Iso-stoichiometric ternary blends of gasoline, ethanol and methanol: investigations into exhaust emissions, blend properties and octane numbers. SAE Int. J. Fuel Lubr. 2012 5 3 945 967 10.4271/2012‑01‑1586
    [Google Scholar]
  38. Shayan S.B. Seyedpour S.M. Ommi F. Moosavy S.H. Alizadeh M. Impact of methanol–gasoline fuel blends on the performance and exhaust emissions of a SI engine. Int J Automot Eng. 2011 1 3 219 227
    [Google Scholar]
  39. Masum B.M. Masjuki H.H. Kalam M.A. Rizwanul Fattah I.M. Palash S.M. Abedin M.J. Effect of ethanol–gasoline blend on NOx emission in SI engine. Renew. Sustain. Energy Rev. 2013 24 209 222 10.1016/j.rser.2013.03.046
    [Google Scholar]
  40. Puertolas B.V. Navarro M.M. Lopez J. Murillo R.M. Mastral A. Garcia T. Recent solutions for the abatement of hydrocarbon emissions during the cold start of light vehicles. Recent Pat. Chem. Eng. 2011 4 1 36 52 10.2174/2211334711104010036
    [Google Scholar]
  41. Jejurkar S. Mishra D. A review of recent patents on micro-combustion and applications. Recent Pat. Eng. 2009 3 3 194 209 10.2174/187221209789117753
    [Google Scholar]
  42. Rao C. Ignition control of advanced combustion engines - a patent landscape. Recent Pat. Mech. Eng. 2009 2 2 154 164 10.2174/2212797610902020154
    [Google Scholar]
  43. Lehmann H. Heimann R. Thermally sprayed thermal barrier coating (TBC) systems: A survey of recent patents. Recent Pat. Mater. Sci. 2008 1 2 140 158 10.2174/1874464810801020140
    [Google Scholar]
  44. Milojević S. Savić S. Marić D. Stopka O. Krstić B. Stojanović B. Correlation between emission and combustion characteristics with the compression ratio and fuel injection timing in tribologically optimized diesel engine. Teh. Vjesn. 2022 29 4 1210 1219
    [Google Scholar]
  45. Milojević S. Glišović J. Savić S. Bošković G. Bukvić M. Stojanović B. Particulate matter emission and air pollution reduction by applying variable systems in tribologically optimized diesel engines for vehicles in road traffic. Atmosphere 2024 15 2 184 10.3390/atmos15020184
    [Google Scholar]
  46. Milojević S. Savić S. Mitrović S. Marić D. Krstić B. Stojanović B. Popović V. Solving the problem of friction and wear in auxiliary devices of internal combustion engines on the example of reciprocating air compressor for vehicles. Teh. Vjesn. 2023 30 1 122 130
    [Google Scholar]
  47. Sambandam P. Murugesan P. Shajahan M.I. Sethuraman B. Abdelmoneam Hussein H.M. Sustainability and environmental impact of hydroxy addition on a light-duty generator powered with an ethanol–gasoline blend. J Renew Energy Environ. 2022 9 2 82 92
    [Google Scholar]
  48. Thamilarasan J. Ravikumar V. Yadav S.P.R. Yarlagadda J. Kumar A. Ramasubramanian S. Sambandam P. Rudesh C.P. Asres Y. Sustainability improvement of ethanol blended gasoline fuelled spark ignition engine by nanoparticles. J. Nanomater. 2022 2022 1 7793947 10.1155/2022/7793947
    [Google Scholar]
  49. Padmanabhan S. Giridharan K. Stalin B. Elango V. Vairamuthu J. Sureshkumar P. Jule L.T. Krishnaraj R. Sustainability and environmental impact of ethanol and oxyhydrogen addition on nanocoated gasoline engine. Bioinorg. Chem. Appl. 2022 2022 1 1936415 10.1155/2022/1936415 35096035
    [Google Scholar]
  50. Shajahan M.I. Sambandam P. Michael J.J. Abdelmoneam Hussein H.M. Environmental impact of oxyhydrogen addition on high-speed gasoline engine characteristics. Energy Sources A Recovery Util. Environ. Effects 2020 ••• 1 14 10.1080/15567036.2020.1812768
    [Google Scholar]
  51. Liang C. Ji C. Gao B. Liu X. Zhu Y. Investigation on the performance of a spark-ignited ethanol engine with DME enrichment. Energy Convers. Manage. 2012 58 19 25 10.1016/j.enconman.2012.01.004
    [Google Scholar]
  52. Huang Y. Huang S. Huang R. Hong G. Spray and evaporation characteristics of ethanol and gasoline direct injection in non-evaporating, transition and flash-boiling conditions. Energy Convers. Manage. 2016 108 68 77 10.1016/j.enconman.2015.10.081
    [Google Scholar]
  53. Karavalakis G. Short D. Vu D. Russell R.L. Asa-Awuku A. Jung H. Johnson K.C. Durbin T.D. The impact of ethanol and iso-butanol blends on gaseous and particulate emissions from two passenger cars equipped with spray-guided and wall-guided direct injection SI (spark ignition) engines. Energy 2015 82 168 179 10.1016/j.energy.2015.01.023
    [Google Scholar]
  54. Ozsezen A.N. Canakci M. Performance and combustion characteristics of alcohol–gasoline blends at wide-open throttle. Energy 2011 36 5 2747 2752 10.1016/j.energy.2011.02.014
    [Google Scholar]
  55. Suarez-Bertoa R. Zardini A.A. Keuken H. Astorga C. Impact of ethanol containing gasoline blends on emissions from a flex-fuel vehicle tested over the Worldwide Harmonized Light duty Test Cycle (WLTC). Fuel 2015 143 173 182 10.1016/j.fuel.2014.10.076
    [Google Scholar]
  56. Turner D. Xu H. Cracknell R.F. Natarajan V. Chen X. Combustion performance of bio-ethanol at various blend ratios in a gasoline direct injection engine. Fuel 2011 90 5 1999 2006 10.1016/j.fuel.2010.12.025
    [Google Scholar]
/content/journals/meng/10.2174/0122127976325325240916045658
Loading
/content/journals/meng/10.2174/0122127976325325240916045658
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Equivalent blends ; Combustion ; Iso-Stoichiometric ; GEM Blends ; Emissions
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test