Skip to content
2000
image of Preparation and Characterization of Fe3O4-Modified Graphene Oxide as Heat Transfer Additive for Paraffin Wax Applications

Abstract

Introduction

In phase change thermal management systems, the development of magnetic phase change materials offers the possibility of effectively integrating passive and active heat control technologies..The low dispersibility of traditional heat transfer additives, the high interfacial thermal resistance with phase change matrices, and the restricted magnetic response characteristics are some of the current problems that must be resolved.

Method

To overcome these challenges, this study employed a co-precipitation method to composite magnetic nanoparticles FeO with graphene oxide (GO). The active sites on GO were functionalized with alkyl groups to prepare FeO-modified graphene oxide (FeO-MGO)/paraffin magnetic composite phase change materials. The morphology, structure, chemical composition, and thermal properties of the resulting magnetic composite phase change materials were tested and characterized.

Result

The results indicated that FeO-MGO exhibits good dispersibility in paraffin, which can enhance the thermal conductivity of the phase change material. The thermal conductivity of the composite phase change material with a FeO-MGO mass fraction of 2.0% was measured to be 0.461 W/m·K, representing a 47.3% increase compared to pure paraffin. Additionally, FeO-MGO demonstrated a certain phase change capability, with a phase change enthalpy reaching 70.35 kJ/kg.

Conclusion

The findings of this study are expected to provide technical support for innovative applications of magnetic-controlled phase change thermal management.

Loading

Article metrics loading...

/content/journals/meng/10.2174/0122127976324000241029061830
2024-12-12
2025-01-19
Loading full text...

Full text loading...

References

  1. Luo J. Zou D. Wang Y. Wang S. Huang L. Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review. Chem. Eng. J. 2022 430 132741 10.1016/j.cej.2021.132741
    [Google Scholar]
  2. Huang Z. Wang C. Zhou L. Wu C. Thermal conductivity enhancement and shape stability of phase-change materials using high-strength 3D graphene skeleton. Surf. Interfaces 2021 26 101338 10.1016/j.surfin.2021.101338
    [Google Scholar]
  3. Wu S. Yan T. Kuai Z. Pan W. Thermal conductivity enhancement on phase change materials for thermal energy storage: A review. Energy Storage Mater. 2020 25 251 295 10.1016/j.ensm.2019.10.010
    [Google Scholar]
  4. Ren S.J. Li J.H. Zhang B.F. Huang K.Y. Bai Y.B. Preparation of a composite phase change material with high thermal storage capacity using modified expanded graphite as the matrix. Diam Relat Mater 2022 2022 121
    [Google Scholar]
  5. Zhao Y. Zhang Z. Cai C. Zhou Z. Ling Z. Fang X. Vertically aligned carbon fibers-penetrated phase change thermal interface materials with high thermal conductivity for chip heat dissipation. Appl. Therm. Eng. 2023 230 120807 10.1016/j.applthermaleng.2023.120807
    [Google Scholar]
  6. Bai J. Zhang B. Yang B. Shang J. Wu Z. Preparation of three-dimensional interconnected graphene/ionic liquid composites to enhanced thermal conductivities for battery thermal management. J. Clean. Prod. 2022 370 133572 10.1016/j.jclepro.2022.133572
    [Google Scholar]
  7. Liu X. Rao Z. Experimental study on the thermal performance of graphene and exfoliated graphite sheet for thermal energy storage phase change material. Thermochim. Acta 2017 647 15 21 10.1016/j.tca.2016.11.010
    [Google Scholar]
  8. Wang J. Xie H. Xin Z. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochim. Acta 2009 488 1-2 39 42 10.1016/j.tca.2009.01.022
    [Google Scholar]
  9. Wang J. Xie H. Xin Z. Preparation and Thermal Properties of Grafted CNTs Composites. J. Mater. Sci. Technol. 2011 27 3 233 238 10.1016/S1005‑0302(11)60055‑8
    [Google Scholar]
  10. Teng T.P. Cheng C.M. Cheng C.P. Performance assessment of heat storage by phase change materials containing MWCNTs and graphite. Appl. Therm. Eng. 2013 50 1 637 644 10.1016/j.applthermaleng.2012.07.002
    [Google Scholar]
  11. Tao Y.B. Lin C.H. He Y.L. Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material. Energy Convers. Manage. 2015 97 103 110 10.1016/j.enconman.2015.03.051
    [Google Scholar]
  12. Fan L.W. Fang X. Wang X. Zeng Y. Xiao Y.Q. Yu Z.T. Xu X. Hu Y-C. Cen K-F. Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials. Appl. Energy 2013 110 163 172 10.1016/j.apenergy.2013.04.043
    [Google Scholar]
  13. Delouei A.A. Naeimi H. Sajjadi H. Atashafrooz M. Imanparast M. Chamkha A.J. An active approach to heat transfer enhancement in indirect heaters of city gate stations: An experimental modeling. Appl. Therm. Eng. 2024 2024 237
    [Google Scholar]
  14. Hedeshi M. Jalali A. Arabkoohsar A. Amiri Delouei A. Nanofluid as the working fluid of an ultrasonic-assisted double-pipe counter-flow heat exchanger. J. Therm. Anal. Calorim. 2023 148 16 8579 8591 10.1007/s10973‑023‑12102‑7
    [Google Scholar]
  15. Feng Y. Li H. Guo K. Lei X. Zhao J. Numerical study on saturated pool boiling heat transfer in presence of a uniform electric field using lattice Boltzmann method. Int. J. Heat Mass Transf. 2019 135 885 896 10.1016/j.ijheatmasstransfer.2019.01.119
    [Google Scholar]
  16. He W. Zhuang Y. Chen Y. Wang C. Experimental and numerical investigations on the melting behavior of Fe3O4 nanoparticles composited paraffin wax in a cubic cavity under a magnetic-field. Int. J. Therm. Sci. 2023 184 107961 10.1016/j.ijthermalsci.2022.107961
    [Google Scholar]
  17. Delouei A.A. Sajjadi H. Ahmadi G. The effect of piezoelectric transducer location on heat transfer enhancement of an ultrasonic-assisted liquid-cooled CPU radiator. Iran. J. Sci. Technol. Trans. Mech. Eng. 2024 48 1 239 252 10.1007/s40997‑023‑00667‑5
    [Google Scholar]
  18. Delouei A.A. Sajjadi H. Atashafrooz M. Hesari M. Ben Hamida M.B. Arabkoohsar A. Louvered fin-and-flat tube compact heat exchanger under ultrasonic excitation. Fire (Basel) 2023 6 1
    [Google Scholar]
  19. Delouei AA Sajjadi H Ahmadi G Ultrasonic vibration technology to improve the thermal performance of CPU water-cooling systems: Experimental investigation. Water 2022 14 24 4000
    [Google Scholar]
  20. Tada Y. Yoshioka S. Takimoto A. Hayashi Y. Heat transfer enhancement in a gas–solid suspension flow by applying electric field. Int. J. Heat Mass Transf. 2016 93 778 787 10.1016/j.ijheatmasstransfer.2015.09.063
    [Google Scholar]
  21. He W.X. Zhuang Y.J. Chen Y.J. Wang C.H. Thermo-magnetic convection regulating the solidification behavior and energy storage of FeO nanoparticles composited paraffin wax under the magnetic-field. Appl. Therm. Eng. 2022 2022 214
    [Google Scholar]
  22. Zawisza B. Sitko R. Malicka E. Talik E. Graphene oxide as a solid sorbent for the preconcentration of cobalt, nickel, copper, zinc and lead prior to determination by energy-dispersive X-ray fluorescence spectrometry. Anal. Methods 2013 5 22 6425 6430 10.1039/c3ay41451e
    [Google Scholar]
  23. Zhang W. Shi X. Zhang Y. Gu W. Li B. Xian Y. Synthesis of water-soluble magnetic graphene nanocomposites for recyclable removal of heavy metal ions. J. Mater. Chem. A Mater. Energy Sustain. 2013 1 5 1745 1753 10.1039/C2TA00294A
    [Google Scholar]
  24. Han Q. Wang Z. Xia J. Chen S. Zhang X. Ding M. Facile and tunable fabrication of Fe3O4/graphene oxide nanocomposites and their application in the magnetic solid-phase extraction of polycyclic aromatic hydrocarbons from environmental water samples. Talanta 2012 101 388 395 10.1016/j.talanta.2012.09.046 23158339
    [Google Scholar]
  25. Zhang S.P. Song H.O. Supramolecular graphene oxide-alkylamine hybrid materials: Variation of dispersibility and improvement of thermal stability. New J. Chem. 2012 36 9 1733 1738 10.1039/c2nj40214a
    [Google Scholar]
  26. Wu T. Wang C. Hu Y. Zhou L. He K. Research on novel battery thermal management system coupling with shape memory PCM and molecular dynamics analysis. Appl. Therm. Eng. 2022 210 118373 10.1016/j.applthermaleng.2022.118373
    [Google Scholar]
  27. Aref A.H. Entezami A.A. Erfan-Niya H. Zaminpayma E. Thermophysical properties of paraffin-based electrically insulating nanofluids containing modified graphene oxide. J. Mater. Sci. 2017 52 5 2642 2660 10.1007/s10853‑016‑0556‑6
    [Google Scholar]
  28. Liu C. Zhang X. Lv P. Li Y. Rao Z. Experimental study on the phase change and thermal properties of paraffin/carbon materials based thermal energy storage materials. Phase Transit. 2017 90 7 717 731 10.1080/01411594.2016.1277219
    [Google Scholar]
/content/journals/meng/10.2174/0122127976324000241029061830
Loading
/content/journals/meng/10.2174/0122127976324000241029061830
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Thermal properties ; Phase change material ; Functionalized graphene oxide
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test